Cite this article as:

Guoyang Li, Feilong Sun, Guilin Wu, Honghui Wu, Junheng Gao, Haitao Zhao, Yuhe Huang, Jun Lu, Chaolei Zhang, Shuize Wang, and Xinping Mao, Achieving 2.6 GPa tensile strength with outstanding ductility in high-carbon low-alloy steel, Int. J. Miner. Metall. Mater., (2026). https://doi.org/10.1007/s12613-025-3185-8
Guoyang Li, Feilong Sun, Guilin Wu, Honghui Wu, Junheng Gao, Haitao Zhao, Yuhe Huang, Jun Lu, Chaolei Zhang, Shuize Wang, and Xinping Mao, Achieving 2.6 GPa tensile strength with outstanding ductility in high-carbon low-alloy steel, Int. J. Miner. Metall. Mater., (2026). https://doi.org/10.1007/s12613-025-3185-8
引用本文 PDF XML SpringerLink

具有优异塑性的2.6 GPa级高碳低合金钢

摘要: 提高低合金钢中碳含量是实现其强度提升最为经济有效且工艺可行的途径之一。然而,当碳含量提高至高碳范围时低合金钢的塑性往往显著恶化,从而限制其应用。本研究针对高碳低合金钢在超高强度水平下塑性不足的问题,在保留高碳强化效应的前提下,通过成分设计与热处理工艺协同调控,实现高碳低合金钢的塑性优化。研究在高碳成分设计基础上协同加入一定量的Ni、Mn、Si、Cr和Mo等合金元素,调控马氏体相变温度,进而调控淬火后获得的相组成;同时通过调节淬火工艺获得不同原始奥氏体晶粒尺寸,以进一步调控淬火马氏体亚结构。结合显微组织表征与拉伸性能测试,分析加工工艺、微观组织与力学性能之间的对应关系。结果表明,所设计实验钢的马氏体转变终止温度低于室温,通过简单淬火–回火处理,实验钢可保留约15vol%的残余奥氏体且其稳定性较高。在变形过程中,稳定性良好的残余奥氏体在整个变形过程中持续转变,通过相变诱导塑性效应提供优异和持续的加工硬化能力从而改善塑性。同时,原始奥氏体晶粒由11.7 μm细化至3.5 μm后,淬火获得的马氏体亚结构由以孪晶马氏体为主转变为以板条马氏体为主,成功诱导高碳马氏体由脆性断裂向韧性断裂转变。最终,本文通过上述成分设计与原始奥氏体晶粒细化的协同调控,获得抗拉强度2.6 GPa、总伸长率超过12%的优异力学性能组合。

 

Achieving 2.6 GPa tensile strength with outstanding ductility in high-carbon low-alloy steel

Abstract: Increasing the carbon content in low-alloy steels is one of the most cost-effective and efficient methods for enhancing strength, often resulting in a significant reduction in ductility. In this study, a high-carbon low-alloy steel with a tensile strength of about 2.6 GPa and a total elongation of 12% was developed, achieving through the synergistic applications of two key strategies: i) refine prior austenite grains (PAGs) leading to the transition of quenched microstructure from brittle twinned martensite to dislocation martensite; ii) suppress the martensitic transformation finish temperature to sub-room temperature by the combined effect of high content of carbon and alloying elements, i.e., Ni, Mn, Si, Cr, and Mo. After quenching and tempering, the steel retains approximately 15vol% stable retained austenite (RA), which enhances ductility through the transformation-induced plasticity (TRIP) effect. These strategies collectively contribute to both high strength and excellent ductility, enhancing the strength–ductility synergy in ultra-high strength steels.

 

/

返回文章
返回