Cite this article as:

Paolo Lai Zhong Lo Biundo, Wojciech Polkowski, Jianmeng Jiao, Maria Wallin, and Merete Tangstad, Ferro-alloys as high temperature phase change materials, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3187-6
Paolo Lai Zhong Lo Biundo, Wojciech Polkowski, Jianmeng Jiao, Maria Wallin, and Merete Tangstad, Ferro-alloys as high temperature phase change materials, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3187-6
引用本文 PDF XML SpringerLink

铁合金作为高温相变材料

摘要: 潜热储能(LHTES) 是一种提升可再生能源功能性和可用性的有效方法,被广泛应用于支持聚光太阳能发电技术。每个 LHTES 系统的核心是相变材料(PCM),即在循环熔化/凝固过程中用于吸收/释放能量的物质。本研究探讨了铁合金作为高性能 PCM 候选材料的潜力,目标为储能容量超过 1 MWh·m−3且工作温度高于 1000°C。通过对含硅(Si)、硼(B)、铬(Cr)、钒(V)和钛(Ti)的二元及三元铁基体系进行热力学评估,以筛选出具有最佳相变特性和储热潜力的合金成分。研究结果凸显了 Fe–Si–B 体系的巨大潜力:尽管硼的高熔点和成本带来挑战,但其极高的潜热显著提升了储能容量。Fe–Si–Cr 体系中发现了具有前景的合金,如 Fe–34Si–38Cr 和 Fe–34Si–43Cr,它们提供了优异的储能密度和适宜的相变温度。在 Fe–Si–V 体系中,钒的添加产生了如 Fe–30Si–16V、Fe–32Si–10V 和 Fe–36Si–14V 等满足储能标准的合金,尽管某些 Si–V 相的高熔点可能限制其实际应用。Fe–Si–Ti 体系展示了突出的成分,包括 Fe–38Si–20Ti 和 Si–48Ti,其储能容量达到约 1.5 MWh·m−3。本研究将铁合金 PCM 与最先进的金属 PCM 进行了对比,突显了某些铁合金的性能优势。

 

Ferro-alloys as high temperature phase change materials

Abstract: Latent heat thermal energy storage (LHTES) is an attractive method enhancing the functionality and availability of renewable energy sources, and it is extensively used to support concentrated solar power technologies. The main feature of every LHTES system is a phase change material (PCM), i.e., a substance used to absorb/release energy upon cyclic melting/solidification. This study investigates the potential of ferro-alloys as high-performance PCM candidates, targeting energy storage capacities exceeding 1 MWh·m–3, and operational temperatures above 1000°C. A thermodynamic assessment of binary and ternary Fe-based systems, alloyed with Si, B, Cr, V, and Ti, was conducted to identify compositions with optimal phase transition characteristics and heat storage potential. The results highlight the significant potential of the Fe–Si–B system, where boron’s exceptionally high latent heat enhances energy storage capacity despite challenges posed by its high melting point and cost. The Fe–Si–Cr system revealed promising alloys, such as Fe–34Si–38Cr and Fe–34Si–43Cr, offering excellent energy storage density and favorable phase transition temperatures. In the Fe–Si–V system, vanadium additions produced alloys like Fe–30Si–16V, Fe–32Si–10V, and Fe–36Si–14V, which meet energy storage criteria, although the high melting points of some Si–V phases may restrict their practical applicability. The Fe–Si–Ti system showed standout compositions, including Fe–38Si–20Ti and Si–48Ti, achieving energy storage capacities of approximately 1.5 MWh·m–3. This study compares ferro-alloy PCMs against state-of-the-art metallic PCMs, highlighting the performance of certain ferro-alloys.

 

/

返回文章
返回