Cite this article as:

Juanjuan Tu, Shanshan Jiang, Yujia Wang, Weitao Hu, Lingyan Cheng, Jingjing Jiang, Huangang Shi, Beibei Xiao, Chao Su, and Daifen Chen, An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3197-4
Juanjuan Tu, Shanshan Jiang, Yujia Wang, Weitao Hu, Lingyan Cheng, Jingjing Jiang, Huangang Shi, Beibei Xiao, Chao Su, and Daifen Chen, An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3197-4
引用本文 PDF XML SpringerLink

钼掺杂策略显著增强低温固体氧化物燃料电池阴极的氧还原活性和耐久性

摘要: 固体氧化物燃料电池(SOFC)作为一种先进的电化学能量转化装置,具有高能量转换效率等特点,近年来得到广泛关注。SOFC的低温化是其大规模应用的关键,而核心是设计开发在低温下具有高氧还原活性和稳定性的阴极。本研究重点通过钼(Mo)掺杂对Ba0.6Sr0.4Co0.85Nb0.15O3−δ(BSCN)基钙钛矿材料进行阴极性能优化。采用溶胶–凝胶法成功制备BSCN及钼改性材料——掺杂量分别为5mol%、10mol%和15mol%的Ba0.6Sr0.4Co0.85Nb0.1Mo0.05O3−δ (BSCNM0.05), Ba0.6Sr0.4Co0.85Nb0.05Mo0.1O3−δ (BSCNM0.1), 及 Ba0.6Sr0.4Co0.85Mo0.15O3−δ (BSCM)。通过X射线衍射分析、热膨胀表征、电化学阻抗谱、热循环稳定性和单电池性能测试,系统评估了钼掺杂对材料晶体结构、电导率、热膨胀系数、氧还原反应活性及电化学性能的影响。结果表明:钼掺杂可增强结构稳定性,提升材料电导率,抑制热膨胀效应,并显著改善电化学性能。X射线光电子能谱表面化学态分析显示,5mol%钼掺杂能促进材料表面吸附氧浓度提升,从而增强氧还原反应活性。密度泛函理论计算证实钼掺杂对材料氧还原反应活性具有促进作用。在600°C工作温度下,BSCNM0.05阴极材料表现出显著增强的电化学阻抗特性,其面积比电阻低至0.048 Ω·cm2。同等工况下,采用BSCNM0.05阴极的阳极支撑单电池峰值功率密度达1477 mW·cm−2。BSCNM0.05热循环稳定性极佳,在600和400°C之间经过126次严苛的热循环后,无任何性能衰减。BSCNM0.05材料在氧还原反应活性、热循环稳定性及电化学性能方面的显著提升,表明适度钼掺杂的BSCNM0.05是一种极具应用潜能的低温固体氧化物燃料电池阴极材料。

 

An effective strategy to enhance the cathodic performance of low-temperature solid oxide fuel cells through Mo-doping

Abstract: This study focused on improving the cathode performance of Ba0.6Sr0.4Co0.85Nb0.15O3−δ (BSCN)-based perovskite materials through molybdenum (Mo) doping. Pure BSCN and Mo-modified-BSCN—Ba0.6Sr0.4Co0.85Nb0.1Mo0.05O3−δ (BSCNM0.05), Ba0.6Sr0.4Co0.85Nb0.05Mo0.1O3−δ (BSCNM0.1), and Ba0.6Sr0.4Co0.85Mo0.15O3−δ (BSCM)—with Mo doping contents of 5mol%, 10mol%, and 15mol%, respectively, were successfully prepared using the sol–gel method. The effects of Mo doping on the crystal structure, conductivity, thermal expansion coefficient, oxygen reduction reaction (ORR) activity, and electrochemical performance were systematically evaluated using X-ray diffraction analysis, thermally induced characterization, electrochemical impedance spectroscopy, and single-cell performance tests. The results revealed that Mo doping could improve the conductivity of the materials, suppress their thermal expansion effects, and significantly improve the electrochemical performance. Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol% Mo doping could facilitate a high adsorbed oxygen concentration, leading to enhanced ORR activity in the materials. Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials. At an operating temperature of 600°C, the BSCNM0.05 cathode material exhibited significantly enhanced electrochemical impedance characteristics, with a reduced area specific resistance of 0.048 Ω·cm2, which was lower than that of the undoped BSCN matrix material by 32.39%. At the same operating temperature, an anode-supported single cell using a BSCNM0.05 cathode achieved a peak power density of 1477 mW·cm−2, which was 30.71%, 56.30%, and 171.50% higher than those of BSCN, BSCNM0.1, and BSCM, respectively. The improved ORR activity and electrochemical performance of BSCNM0.05 indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.

 

/

返回文章
返回