Cite this article as:

Hui Xu, Ning Sun, Jiancheng Wang, Guozhu Zheng, Xiaoyu Zhang, Yingxue Ju, Ting Chen, and Shaorong Wang, Synergistic multielement effect at the B-site of high entropy double perovskite oxide: A promising fuel electrode for efficient co-electrolysis of H2O and CO2, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3201-z
Hui Xu, Ning Sun, Jiancheng Wang, Guozhu Zheng, Xiaoyu Zhang, Yingxue Ju, Ting Chen, and Shaorong Wang, Synergistic multielement effect at the B-site of high entropy double perovskite oxide: A promising fuel electrode for efficient co-electrolysis of H2O and CO2, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3201-z
引用本文 PDF XML SpringerLink

高熵双钙钛矿氧化物B位点协同多元素效应:高效共电解H2O与CO2的理想燃料电极

摘要: 固体氧化物电解池(SOEC)中燃料电极的催化活性对促进燃料气电解至关重要,也是决定整体电解效率的关键因素之一。然而,传统燃料电极材料存在催化活性和长期稳定性不足的问题,严重制约了共电解H2O和CO2技术的商业化应用。传统的燃料电极多采用Ni基陶瓷金属材料,但是在长期共电解模式下多存在Ni氧化、颗粒长大/迁移以及积碳的问题,极大地限制了SOEC的稳定性。本研究设计了一种新型的B位高熵钙钛矿氧化物Sr2FeTi0.2Cr0.2Mn0.2Mo0.2Co0.2O6–δ(SFTCMMC),并系统评估了其作为SOEC燃料电极在共电解过程中的物理化学性质与电化学性能。研究证实,施加电压能够显著促进反应气体在电极表面的吸附与解离过程,且H2O和CO2共电解反应过程中的主导驱动机制为H2O电解。通过改变操作条件,系统探究了温度、H2O和CO2浓度及外加电压对电解质支撑型SOEC电化学性能的影响。在850°C、1.5 V的电解电压下基于SFTCMMC燃料极的SOEC共电解电流密度可达1.47 A·cm-2。此外,电池在800°C、1.3 V电压下稳定运行了150 h,结合拉曼光谱分析,未检测到积碳现象。研究证明,高熵SFTCMMC钙钛矿是一种具有应用前景的高效H2O和CO2共电解的燃料极材料。

 

Synergistic multielement effect at the B-site of high entropy double perovskite oxide: A promising fuel electrode for efficient co-electrolysis of H2O and CO2

Abstract: The performance of the fuel electrode in a solid oxide electrolysis cell (SOEC) is crucial to facilitating fuel gas electrolysis and is the key determinant of overall electrolysis efficiency. Nevertheless, the commercialization of integrated CO2–H2O electrolysis in SOEC remains constrained by suboptimal catalytic efficiency and long-term stability limitations inherent to conventional fuel electrode architectures. A novel high-entropy Sr2FeTi0.2Cr0.2Mn0.2Mo0.2Co0.2O6–δ (SFTCMMC) was proposed as a prospective electrode material of co-electrolysis in this work. The physicochemical properties and electrochemical performance in the co-electrolysis reaction were investigated. Full cell is capable of electrolyzing H2O and CO2 effectively with an applied voltage. The effects of temperature, H2O and CO2 concentrations, and applied voltage on the electrochemical performance of Sc0.18Zr0.82O2–δ (SSZ)-electrolyte supported SOEC were investigated by varying the operating conditions. The SOEC obtains a favorable electrolysis current density of 1.47 A·cm-2 under co-electrolysis condition at 850°C with 1.5 V. Furthermore, the cell maintains stable performance for 150 h at 1.3 V, and throughout this period, no carbon deposition is detected. The promising findings suggest that the high-entropy SFTCMMC perovskite is a viable fuel electrode candidate for efficient H2O/CO2 co-electrolysis.

 

/

返回文章
返回