Cite this article as:

K. Naveen Kumar, L. Vijayalakshmi, P.K. Vishwakarma, Jiseok Lim, Mohammad Rezaul Karim, Ibrahim A. Alnaser, and D. Rajesh, Optimization of Eu-doped lanthanum tungstate nanophosphors via surface modification for superior red luminescence and photonic applications, Int. J. Miner. Metall. Mater., 32(2025), No. 10, pp.2579-2591. https://doi.org/10.1007/s12613-025-3212-9
K. Naveen Kumar, L. Vijayalakshmi, P.K. Vishwakarma, Jiseok Lim, Mohammad Rezaul Karim, Ibrahim A. Alnaser, and D. Rajesh, Optimization of Eu-doped lanthanum tungstate nanophosphors via surface modification for superior red luminescence and photonic applications, Int. J. Miner. Metall. Mater., 32(2025), No. 10, pp.2579-2591. https://doi.org/10.1007/s12613-025-3212-9
引用本文 PDF XML SpringerLink

表面改性优化掺铕钨酸镧纳米磷光体用于提升红色发光和光学特性

摘要: 使用聚乙烯吡咯烷酮(PVP)、十六烷基三甲基溴化铵(CTAB)、柠檬酸三钠(TC)、聚乙烯醇(PVA)和乙二醇(EG)分别对Eu3+活化的钨酸镧纳米磷光体的表面进行改性,系统地研究了其显示强烈红色发射的发光行为。这些纳米磷光体是通过简单的水热辅助固态反应合成的。X射线衍射(XRD)分析证实了所有制备样品的正交晶体结构。使用扫描电子显微镜(SEM)和粒度分布分析进行了形态和粒度分析。使用高分辨率透射电子显微镜(HRTEM)辅以元素映射来评估优化样品的颗粒尺寸和晶面间距。傅里叶变换红外光谱(FTIR)用于鉴定官能团并分配相应的振动带。X射线光电子能谱(XPS)分析了优化纳米磷光体的元素组成和结合能。结果表明,采用PVA改性的样品在616 nm处表现出明显的红色发射,这可能归因于5D0→7紫外激发下Eu3+离子的F2电偶极跃迁。进一步对激发和发射光谱分析进行分析,PVA改性的纳米磷光体表现出99.6%的优异色纯度,国际照明委员会(CIE)色度坐标为(0.6351, 0.3644),相关色温为1147 K,这归因于PVA表面层有效促进的表面钝化和非辐射复合的抑制。所有样品的寿命衰减分析表明,优化后的样品的寿命显著延长,进一步支持了其优异的发光效率。此外,对纳米磷酸盐生物相容性的测试表明其在生物医学应用中的潜力。总体而言,这些发现强调了PVA改性的掺杂Eu3+的钨酸镧纳米磷光体作为高效红色发射体的功效,适用于白光发光二极管(WLED)和潜在指纹检测,同时为表面改性在调节纳米磷光体光学性质中的作用提供了有借鉴。

 

Optimization of Eu-doped lanthanum tungstate nanophosphors via surface modification for superior red luminescence and photonic applications

Abstract: The luminescence behavior of Eu3+-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents, including polyvinylpyrrolidone (PVP), cetyltrimethylammonium bromide (CTAB), trisodium citrate (TC), polyvinyl alcohol (PVA), and ethylene glycol (EG). These nanophosphors were synthesized via a facile hydrothermal-assisted solid-state reaction. X-ray diffraction (XRD) analysis confirmed the orthorhombic crystal structure of all the prepared samples. Morphological and size analyses were performed using scanning electron microscopy (SEM) and particle size distribution profiling. High-resolution transmission electron microscopy (HRTEM) complemented by elemental mapping was used to evaluate the particle dimensions and interplanar spacing of the optimized sample. Fourier-transform infrared spectroscopy (FTIR) was used to identify functional groups and assign corresponding vibrational bands. X-ray photoelectron spectroscopy (XPS) provided insights into the elemental composition and binding energies of the optimized nanophosphors. Notably, the PVA-modified sample doped with 14mol% Eu3+ exhibited pronounced red emission at 616 nm, attributed to the 5D07F2 electric dipole transition of Eu3+ ions under ultraviolet (UV) excitation. Detailed excitation and emission spectral analyses were performed, with band assignments corresponding to the relevant electronic transitions. Among the surface-treated variants, the PVA-modified nanophosphors demonstrated exceptional color purity of 99.6%, international commission on illumination (CIE) chromaticity coordinates of (0.6351, 0.3644), and a correlated color temperature of 1147 K. These superior optical features are ascribed to the enhanced surface passivation and suppression of nonradiative recombination, facilitated effectively by the PVA surface layer. Lifetime decay analysis across all samples revealed a significantly extended lifetime for the optimized composition, further supporting its superior luminescence efficiency. In addition, evaluation of the biocompatibility of the nanophosphors highlighted their potential for biomedical applications. Overall, these findings emphasize the efficacy of PVA-modified Eu3+-doped lanthanum tungstate nanophosphors as highly efficient red emitters, suitable for application in white light-emitting diodes (WLEDs) and latent fingerprint detection while offering valuable insights into the role of surface modification in tuning the optical properties of nanophosphors.

 

/

返回文章
返回