Cite this article as:

Zhanglei Zhu, Yue Li, Chengchi Tian, Bohui Zhao, and Qiuyue Sheng, Agglomeration and floatability characteristics of Ar plasma-modified siderite, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3213-8
Zhanglei Zhu, Yue Li, Chengchi Tian, Bohui Zhao, and Qiuyue Sheng, Agglomeration and floatability characteristics of Ar plasma-modified siderite, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3213-8
引用本文 PDF XML SpringerLink

氩等离子体改性菱铁矿的团聚特性与可浮性研究

摘要: 粗糙矿物颗粒间的界面相互作用是矿物加工领域的研究核心,因其直接决定颗粒团聚效果与可浮性,深刻影响矿产分选效率与资源利用率。针对天然菱铁矿团聚稳定性差、浮选回收率偏低的行业痛点,本研究创新性引入氩等离子体表面改性技术,通过沉降试验、絮体粒径测量及分形维数定量计算等多维度表征,系统探究改性对菱铁矿颗粒团聚特性的调控机制。试验结果显示,氩等离子体改性可显著促进菱铁矿颗粒团聚,絮体粒径较未处理组明显增大,密度提升亦加快沉降速率,为改性技术的有效性提供了直接实证。机理探究层面,本研究突破传统单一模型局限,构建融合表面元积分(SEI)法、微分几何理论与复合辛普森法则的多参数耦合模型,首次将表面粗糙度、润湿性及电荷分布的动态变化纳入统一计算框架,实现矿物界面相互作用的精准量化。数据表明,经 30 min氩等离子体处理后,菱铁矿颗粒间相互作用能垒从 2.3×1017 J 降至 1.6×1017 J,这一降低为团聚行为提供了有力佐证。此外,浮选试验证实,改性后菱铁矿团聚体的浮选回收率显著提升,验证了技术的实际应用潜力。该研究的创新价值不仅在于证实了氩等离子体改性对菱铁矿团聚 - 浮选性能的优化作用,更在于建立了多因素耦合的界面作用预测模型,为颗粒表面改性技术的定向设计提供理论支撑,对推动低品位菱铁矿资源高效利用、升级矿物加工工艺具有重要实践意义。

 

Agglomeration and floatability characteristics of Ar plasma-modified siderite

Abstract: Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability. This study comprehensively investigates the agglomeration characteristics of siderite particles after argon (Ar) plasma surface modification through settling tests, flocs size measurements, and fractal dimension calculations. Ar plasma surface modification promotes the agglomeration of siderite particles, as evidenced by increased floc size and density. The agglomeration mechanism induced by Ar plasma surface modification is evaluated using a theoretical model combining the surface element integration (SEI) approach, differential geometry, and the composite Simpson’s rule. Changes in surface roughness, wettability, and charge are considered in this model. Compared to the unpretreated siderite particles, the energy barrier for interaction of the 30-min Ar plasma-pretreated siderite particles decreases from 2.3 × 10−17 J to 1.6 × 10−17 J. This reduction provides strong evidence for the agglomeration behavior of siderite particles. Furthermore, flotation experiments confirm that Ar plasma surface modification is conducive to the aggregation flotation of siderite. These findings offer crucial insights into particle aggregation and dispersion behaviors, with notable application in mineral flotation.

 

/

返回文章
返回