Cite this article as:

Chunyu Guo, Xiangyu Tang, Yu’e Chen, Changyou Gao, Qinglin Shan, Heyi Wei, Xusheng Liu, Chuncheng Lu, Meixia Fu, Enhui Wang, Xinhong Liu, Xinmei Hou, and Yanglong Hou, From microstructure to performance optimization: Innovative applications of computer vision in materials science, Int. J. Miner. Metall. Mater., 33(2026), No. 1, pp.94-115. https://doi.org/10.1007/s12613-025-3217-4
Chunyu Guo, Xiangyu Tang, Yu’e Chen, Changyou Gao, Qinglin Shan, Heyi Wei, Xusheng Liu, Chuncheng Lu, Meixia Fu, Enhui Wang, Xinhong Liu, Xinmei Hou, and Yanglong Hou, From microstructure to performance optimization: Innovative applications of computer vision in materials science, Int. J. Miner. Metall. Mater., 33(2026), No. 1, pp.94-115. https://doi.org/10.1007/s12613-025-3217-4
引用本文 PDF XML SpringerLink

从微观结构到性能优化:计算机视觉在材料科学中的创新应用

摘要: 计算机视觉技术的快速发展为材料微观结构的传统分析方法带来了革命性变革。本文系统回顾了计算机视觉的发展历程,并重点探讨了深度学习驱动的计算机视觉在材料科学中的四个关键应用方向:基于微观结构的性能预测、微观结构信息生成、微观结构缺陷检测以及基于晶体结构的性能预测。计算机视觉显著降低了传统材料性能预测方法的成本,同时在图像生成与缺陷检测方面的进展提升了材料性能评估的效率与可靠性。深度学习模型通过整合晶体与微观结构数据,加速了性能优化新材料的开发,推动了下一代材料的发现与创新。最后,本文展望了计算机视觉在材料科学中的跨学科快速发展及其未来前景。

 

From microstructure to performance optimization: Innovative applications of computer vision in materials science

Abstract: The rapid advancements in computer vision (CV) technology have transformed the traditional approaches to material microstructure analysis. This review outlines the history of CV and explores the applications of deep-learning (DL)-driven CV in four key areas of materials science: microstructure-based performance prediction, microstructure information generation, microstructure defect detection, and crystal structure-based property prediction. The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction. Moreover, recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments. The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data, thereby allowing for the discovery and innovation of next-generation materials. Finally, the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.

 

/

返回文章
返回