Cite this article as:

Xiang Yu, Yuechao Chen, Yong Lu, Yihui Guo, Jinbin Zhang, Yixiong Huang, Yupeng Zhang, Jiajia Han, Cuiping Wang, and Xingjun Liu, Development and characterization of a high-Cr-content Co–Ni–Al–V–Ta–Cr superalloy: Microstructure, mechanical properties and oxidation resistance, Int. J. Miner. Metall. Mater., 33(2026), No. 3, pp.908-920. https://doi.org/10.1007/s12613-025-3229-0
Xiang Yu, Yuechao Chen, Yong Lu, Yihui Guo, Jinbin Zhang, Yixiong Huang, Yupeng Zhang, Jiajia Han, Cuiping Wang, and Xingjun Liu, Development and characterization of a high-Cr-content Co–Ni–Al–V–Ta–Cr superalloy: Microstructure, mechanical properties and oxidation resistance, Int. J. Miner. Metall. Mater., 33(2026), No. 3, pp.908-920. https://doi.org/10.1007/s12613-025-3229-0
引用本文 PDF XML SpringerLink

高Cr含量Co–Ni–Al–V–Ta–Cr高温合金的开发与表征:显微组织、力学性能与抗氧化性能

摘要: 在Co基高温合金中,通过提高Cr含量以增强抗氧化能力,同时保持γ/γ′的组织的稳定性,是合金开发中的关键问题。本文基于CALPHAD方法对Co–30Ni–10Al–5V–4Ta合金进行合金化评估,进而开发了高Cr含量且保持γ/γ′两相结构的Co–30Ni–10Al–5V–4Ta–12Cr合金。本研究对其组织特征与性能进行了表征,结果表明,该合金的γ′相溶解温度为1139°C,密度为8.48 g/cm3,γ/γ′晶格错配度为 +0.28%,并在800°C下的压缩屈服强度达到651 MPa。在1000°C下氧化 200 h后,合金增重为6.5 mg/cm2。本研究进一步分析其氧化行为发现,氧化层由外侧疏松层与内侧较致密的混合氧化层组成:外层主要为CoO、NiO与V3O4;内层包含CoO、NiO、V3O4以及Al2O3、Cr2O3、TaO2的氧化物相。上述结果揭示了高Cr添加条件下合金的组织稳定性与氧化行为。

 

Development and characterization of a high-Cr-content Co–Ni–Al–V–Ta–Cr superalloy: Microstructure, mechanical properties and oxidation resistance

Abstract: Enhancing the oxidation resistance of Co-based superalloys by adding a high content of Cr, while simultaneously ensuring the stability of the γ/γ′ phases, presents a significant challenge. This study evaluated the alloying potential of Co–30Ni–10Al–5V–4Ta using the CALPHAD method, revealing promising characteristics. The developed Co–30Ni–10Al–5V–4Ta–12Cr alloy characterized by high Cr content and γ/γ′ two-phase structure, demonstrating high γ′ solvus temperature of 1139°C, low density of 8.48 g/cm3, minimal γ/γ′ lattice misfit of +0.28%, high compressive yield strength of 651 MPa at 800°C, and excellent oxidation resistance with a weight gain of 6.5 mg/cm3 after 200 h at 1000°C. Examination of the oxidation behavior at 1000°C revealed an oxide layer consisting of a porous outer CoO, NiO, and V3O4 (CNV) oxide and a denser inner mixed oxide layer comprising CoO, NiO, and V3O4 (CNV) oxide, Al2O3, Cr2O3, CoO, and NiO (CNAC) oxide, and TaO2, CoO, and NiO (CNT) oxide.

 

/

返回文章
返回