Cite this article as:

Pritesh Garg, Hesham Ahmed, Charlotte Andersson, Jan-Olov Wikström, TK Sandeep Kumar, Daniel Marjavaara, and Susanne Rostmark, Influence of particle size and inherent gangue on hydrogen-based reduction of magnetite iron ores, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3232-5
Pritesh Garg, Hesham Ahmed, Charlotte Andersson, Jan-Olov Wikström, TK Sandeep Kumar, Daniel Marjavaara, and Susanne Rostmark, Influence of particle size and inherent gangue on hydrogen-based reduction of magnetite iron ores, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3232-5
引用本文 PDF XML SpringerLink

粒度和原生脉石对磁铁矿氢基还原的影响

摘要: 钢铁行业向氢基炼铁的转型需要更深入地理解磁铁矿的还原过程,这是实现脱碳的关键但尚未得到充分研究的途径。本研究系统地考察了颗粒大小和脉石成分对四种工业磁铁矿精矿(其氧化钙和氧化镁含量各不相同)在氢基还原过程中的影响。采用 973K 的热重分析(TGA)、中断还原实验以及还原后的表征步骤来评估不同粒度部分和整体矿石中的还原程度和相变情况。较细的颗粒通常表现出更快且更完全的还原。然而,在某些矿石中,这种趋势会被脉石的影响所抵消。以氧化镁作为脉石的磁铁矿在还原过程中倾向于形成镁-伍斯特矿固溶体(Mg,Fe)O,从而形成致密的微观结构,阻碍氢气扩散并限制还原进程。相比之下,以氧化钙作为脉石的磁铁矿有助于形成中间的钙铁矿,这促进了多孔形态和增强的还原性。值得注意的是,即使是含有氧化镁的较细颗粒矿石,其还原程度也低于含有氧化钙作为脉石的较粗颗粒矿石。这突显了脉石成分在控制还原动力学、中间相形成以及最终产物形态方面所起的主导作用。这些发现有助于增进相关知识,从而为实现无化石燃料炼铁提供支持,强调了在评估磁铁矿用于氢基还原时,既要考虑粒度特征,也要考虑其异质性的重要性。

 

Influence of particle size and inherent gangue on hydrogen-based reduction of magnetite iron ores

Abstract: The steel industry’s transition to hydrogen-based ironmaking necessitates a deeper understanding of magnetite ore reduction, a crucial yet underexplored pathway for decarbonization. This study systematically investigates the combined effects of particle size and gangue composition on hydrogen-based reduction behavior of four industrial magnetite ore concentrates with varying CaO and MgO contents. Thermogravimetric analysis at 973 K, interrupted reduction experiments, and post-reduction characterization steps are used to evaluate reduction extent and phase transformations across different particle size fractions and bulk ores. The finer fractions generally exhibit faster and more complete reduction. However, this trend is overridden by gangue effects in certain ores. Magnetite ores with MgO as gangue tend to form magnesio-wustite solid solution (Mg,Fe)O during reduction, resulting in dense microstructures that impede hydrogen diffusion and limit reduction progress. In contrast, magnetite ores with CaO as gangue facilitate the formation of intermediate calcium ferrites, which promote porous morphology and enhanced reducibility. Notably, even the finer particles of ore containing MgO show a lower reduction degree than the coarser particles of the ore containing CaO as gangue. This highlights the dominant role of gangue composition in governing reduction kinetics, intermediate phase formation and final product morphology. These findings contribute to the growing knowledge necessary to enable fossil-free ironmaking by emphasizing the importance of considering both granulometric characteristics and heterogeneity when evaluating magnetite ores for hydrogen-based reduction.

 

/

返回文章
返回