Cite this article as:

Song Liu, Qiqi Li, Qing Ye, Zhiwei Zhao, Dianyu E, and Shibo Kuang, Enhanced semi-supervised learning for top gas flow state classification to optimize emission and production in blast ironmaking furnaces, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3233-4
Song Liu, Qiqi Li, Qing Ye, Zhiwei Zhao, Dianyu E, and Shibo Kuang, Enhanced semi-supervised learning for top gas flow state classification to optimize emission and production in blast ironmaking furnaces, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3233-4
引用本文 PDF XML SpringerLink

基于改进的半监督学习方法的高炉炉顶煤气流状态分类研究

摘要: 基于高炉炉顶图像和深度学习方法对高炉炉顶煤气流状态进行自动分类通常需要大量的标记数据,而对数据进行手动标记既高劳动力又高经济成本。为克服这一挑战,提出了一种基于Mean Teacher改进的半监督学习模型,该模型结合了一个新的特征损失模块,以在有限的标记样本下最大化分类性能。模型研究结果表明,所提出的模型在准确率上均优于基线Mean Teacher模型和全监督方法。具体而言,对于标记比例为20%、30%和40%的数据集,使用单次训练迭代的方式,模型的准确率分别为78.61%、82.21%和85.2%,而多次训练迭代的方式准确率分别为82.09%、81.97%和81.59%。此外,本研究工作还为各种应用场景提供了专门的训练方案,以支持不同的部署需求。研究结果显示所提出的方法在数据最小化标签要求和推进智能高炉诊断方面具有重要潜力。

 

Enhanced semi-supervised learning for top gas flow state classification to optimize emission and production in blast ironmaking furnaces

Abstract: Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data, whose manual annotation is both labor-intensive and cost-prohibitive. To mitigate this challenge, we present an enhanced semi-supervised learning approach based on the Mean Teacher framework, incorporating a novel feature loss module to maximize classification performance with limited labeled samples. The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy. Specifically, for datasets with 20%, 30%, and 40% label ratios, using a single training iteration, the model yields accuracies of 78.61%, 82.21%, and 85.2%, respectively, while multiple-cycle training iterations achieves 82.09%, 81.97%, and 81.59%, respectively. Furthermore, scenario-specific training schemes are introduced to support diverse deployment need. These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.

 

/

返回文章
返回