Cite this article as:

Gonghao Lian, Xiaoming Liu, Qiang Wang, Chunguang Shen, Yi Wang, and Wangzhong Mu, Artificial intelligence-assisted non-metallic inclusion particle analysis in advanced steels using machine learning: A review, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3239-y
Gonghao Lian, Xiaoming Liu, Qiang Wang, Chunguang Shen, Yi Wang, and Wangzhong Mu, Artificial intelligence-assisted non-metallic inclusion particle analysis in advanced steels using machine learning: A review, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3239-y
引用本文 PDF XML SpringerLink

人工智能辅助的机器学习先进钢材非金属夹杂物分析:文献综述

摘要: 非金属夹杂物的检测与表征对洁净钢生产至关重要。基于此背景,人工智能(AI)技术,特别是机器学习(ML),近年来在金属材料的高维数据处理与图像分析中的应用发展迅猛,并在冶金过程夹杂物分析领域展现出巨大潜力。本研究系统阐述了基于机器学习预测先进钢材中夹杂物的智能化研究,涵盖了不同钢种中夹杂物的检测、分类及特征预测。文章总结了基于机器学习的数据与图像分析技术在不同特征洁净钢研究中的应用。在数据分析方面,基于机器学习的夹杂物预测方法建立了实验参数与夹杂物特征的关联性,并分析了不同参数对模型精确度的重要性。在图像分析方面,重点论述了通过深度学习对不同类型夹杂物进行分类,并与数据分析方法进行对比。最后,本文展对该领域的未来研究方向进行了展望。本研究从可持续冶金角度为应用人工智能方法开展洁净钢研究提供了智能化方面的参考。

 

Artificial intelligence-assisted non-metallic inclusion particle analysis in advanced steels using machine learning: A review

Abstract: The detection and characterization of non-metallic inclusions are essential for clean steel production. Recently, imaging analysis combined with high-dimensional data processing of metallic materials using artificial intelligence (AI)-based machine learning (ML) has developed rapidly. This technique has achieved impressive results in the field of inclusion classification in process metallurgy. The present study surveys the ML modeling of inclusion prediction in advanced steels, including the detection, classification, and feature prediction of inclusions in different steel grades. Studies on clean steel with different features based on data and image analysis via ML are summarized. Regarding the data analysis, the inclusion prediction methodology based on ML establishes a connection between the experimental parameters and inclusion characteristics and analyzes the importance of the experimental parameters. Regarding the image analysis, the focus is placed on the classification of different types of inclusions via deep learning, in comparison with data analysis. Finally, further development of inclusion analyses using ML-based methods is recommended. This work paves the way for the application of AI-based methodologies for ultraclean-steel studies from a sustainable metallurgy perspective.

 

/

返回文章
返回