Cite this article as:

Haobo Liu, Liangtai Wang, Tongjie Qiao, Fengshuo Xi, Xiuhua Chen, Jijun Lu, Xiufeng Li, Wenhui Ma, and Shaoyuan Li, Molten salt electrochemical synthesis of NiSi2–SiNRs anodes from photovoltaic waste silicon, Int. J. Miner. Metall. Mater., (2026). https://doi.org/10.1007/s12613-025-3250-3
Haobo Liu, Liangtai Wang, Tongjie Qiao, Fengshuo Xi, Xiuhua Chen, Jijun Lu, Xiufeng Li, Wenhui Ma, and Shaoyuan Li, Molten salt electrochemical synthesis of NiSi2–SiNRs anodes from photovoltaic waste silicon, Int. J. Miner. Metall. Mater., (2026). https://doi.org/10.1007/s12613-025-3250-3
引用本文 PDF XML SpringerLink

光伏硅废料熔盐电化学合成NiSi2–SiNRs负极材料研究

摘要: 光伏产业的快速发展伴生出大量硅废料(wSi),由于粒径细小且表面氧化难以控制,导致其高效回收受阻。本研究提出一种熔盐电化学策略,将光伏硅废料转化为NiSi2–SiNRs复合材料,并用作于高性能锂离子电池负极材料。通过可控氧化在废硅表面形成稳定的钝化层,同时原位生成高活性的NiSi2催化液滴,利用熔盐电场调控硅的表面能,使得颗粒整合驱动局部定向生长,从而实现NiSi2–SiNRs复合材料的自组装制备。作为锂离子电池负极材料时,NiSi2–SiNRs表现出快速的离子传输和有效的应变缓冲能力,高长径比的硅纳米棒以及NiSi2的存在促进了锂离子在横纵向的快速扩散。得益于其稳固的结构设计,NiSi2–SiNRs负极实现了91.61%的优异首次库仑效率,并在2 A·g-1电流密度下循环800次后容量保持率达72.99%。本研究为探究熔盐电化学合成中硅化物/硅界面提供了良好的模型体系,并为光伏废硅升级再造为高性能锂离子电池负极提供了有效策略。

 

Molten salt electrochemical synthesis of NiSi2–SiNRs anodes from photovoltaic waste silicon

Abstract: The rapid expansion of the photovoltaic industry has generated heavily oxidized waste silicon (wSi), which hinders efficient recycling owing to its small particle size and uncontrolled surface oxidation. This study introduces a molten salt electrochemical strategy for converting photovoltaic wSi into NiSi2–silicon nanorods (NiSi2–SiNRs) as high-performance anode materials for lithium-ion batteries. A stable oxidized passivation layer is formed on the wSi surface via controlled oxidation, and further in situ generated highly active NiSi2 droplets. The molten salt electric field modulates the surface energy of silicon, while particle integration drives localized directional growth, enabling the self-assembly of NiSi2–SiNRs composites. These NiSi2–SiNRs anodes exhibit rapid ion transport and effective strain buffering. The high aspect ratio of SiNRs and the presence of retained NiSi2 facilitate both longitudinal and transverse Li+ diffusion. Owing to their robust structural design, the NiSi2–SiNRs anode achieves an excellent initial Coulombic efficiency of 91.61% and retains 72.99% of its capacity after 800 cycles at 2 A·g−1. This study establishes a model system for investigating silicide/silicon interfaces in molten salt electrochemical synthesis and provides an effective strategy for upcycling photovoltaic wSi into high-performance lithium-ion battery anodes.

 

/

返回文章
返回