Cite this article as:

Hafiz Muhammad, Rehan Tariq, Umer Masood Chaudry, Jeong-Rim Lee, Nooruddin Ansari, Mansoor Ali, and Tea-Sung Jun, Tensile failure mode transitions from subzero to elevated deformation temperature in Mg–6Al–1Zn alloy, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3256-x
Hafiz Muhammad, Rehan Tariq, Umer Masood Chaudry, Jeong-Rim Lee, Nooruddin Ansari, Mansoor Ali, and Tea-Sung Jun, Tensile failure mode transitions from subzero to elevated deformation temperature in Mg–6Al–1Zn alloy, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3256-x
引用本文 PDF XML SpringerLink

Mg–6Al–1Zn合金从零度以下到变形温度的拉伸破坏模式

摘要: 了解镁合金的温度依赖性变形行为对于其在航空航天领域的广泛应用至关重要。本文探讨了热轧AZ61镁合金在–50、25、50和150°C下沿轧制方向(RD)和横向(TD)的单轴拉伸下的变形机制。结果表明,–50°C的高强度有限伸长率转变为150°C时显著软化和最大延展性。TD样品的强度相较于RD高2%–6%;然而,由于从孪晶转变为热激活滑移和恢复,这种屈服各向异性在150°C时减弱。断口分析表明,随着温度的升高,断裂从半脆性变为完全延性断裂。电子背散射衍射(EBSD)分析证实了低温下孪晶驱动的晶粒细化,而高温下的变形涉及沿剪切区的晶粒伸长,从而在材料失效前实现了更大的应变调节。

 

Tensile failure mode transitions from subzero to elevated deformation temperature in Mg–6Al–1Zn alloy

Abstract: Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector. This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction (RD) and transverse direction (TD) at –50, 25, 50, and 150°C. Results reveal a transition from high strength with limited elongation at –50 °C to significant softening and maximum ductility at 150°C. TD samples consistently showed 2%–6% higher strength than RD; however, this yield anisotropy diminished at 150°C due to the shift from twinning to thermally activated slip and recovery. Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature. Electron backscattered diffraction (EBSD) analysis confirmed twinning-driven grain refinement at low temperatures, while deformation at high temperatures involved grain elongation along shear zones, enabling greater strain accommodation before material failure.

 

/

返回文章
返回