Cite this article as:

Zidong Yu, Xiaojuan Liu, Zhicheng Liu, Ye Liu, Chao Su, Zhi Sun, Jilei Du, and Tao Wei, Understanding of TiO2/Co3O4-modified configuration strategy for stabilizing O3-Type NaNi0.4Fe0.2Mn0.4O2 cathodes with enhanced long-term and rate performance, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3260-1
Zidong Yu, Xiaojuan Liu, Zhicheng Liu, Ye Liu, Chao Su, Zhi Sun, Jilei Du, and Tao Wei, Understanding of TiO2/Co3O4-modified configuration strategy for stabilizing O3-Type NaNi0.4Fe0.2Mn0.4O2 cathodes with enhanced long-term and rate performance, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3260-1
引用本文 PDF XML SpringerLink

TiO2/Co3O4共掺杂的构型策略对O3-型NaNi0.4Fe0.2Mn0.4O2阴极材料的稳定性研究以及其增强的长循环及倍率性能

摘要: 锂离子电池虽广泛应用于便携式电子设备,但由于锂的成本高且资源有限,其在大规模电网储能中的应用受到限制。作为更具经济性的替代方案,钠离子电池展现出大规模应用的潜力。在众多正极材料中,O3型NaNi0.4Fe0.2Mn0.4O2(NFM424)虽具有高容量和易合成的优点,却因钠离子半径大、静电作用强而导致结构退化及离子动力学缓慢。为解决这些问题,研究提出结合TiO2与Co3O4的构型策略以提升结构和电化学稳定性。由此制得的NaNi0.4Fe0.2Mn0.3Co0.05Ti0.05O2(NFMCT)正极材料有效抑制了钠离子空位有序化,同时增强了相结构完整性和离子扩散路径。通过高温固相法合成的NFMCT材料在1  C倍率下循环550次后容量保持率达93.7  mAh·g–1,并在2  C和5  C高倍率下表现出优异的性能。这些发现深化了对多元素氧化物构型策略的理解,为设计高性能钠离子电池正极提供了实用方案。

 

Understanding of TiO2/Co3O4-modified configuration strategy for stabilizing O3-Type NaNi0.4Fe0.2Mn0.4O2 cathodes with enhanced long-term and rate performance

Abstract: Lithium-ion batteries are widely used in portable electronics, but their application in grid-scale energy storage is limited due to lithium’s high cost and resource constraints. As a more affordable alternative, sodium-ion batteries (SIBs) offer the promise of large-scale deployment. Among various cathode materials, O3-type NaNi0.4Fe0.2Mn0.4O2 (NFM424) demonstrates high capacity and ease of synthesis, yet suffers from structural degradation and sluggish Na+ kinetics caused by large ionic radius and strong electrostatic interactions. To overcome these issues, a configuration strategy combined with TiO2 and Co3O4 was introduced to improve structural and electrochemical stability. The resulting NaNi0.4Fe0.2Mn0.3Co0.05Ti0.05O2 (NFMCT) cathode mitigated Na+/vacancy ordering while enhancing phase integrity and diffusion pathways. Synthesized via high-temperature solid-state reaction, NFMCT maintained 93.7 mAh·g–1 after 550 cycles at 1 C, with superior rate capabilities at 2 C and 5 C. These findings deepen the understanding of configuration strategy by using multi-element oxide and highlight a practical strategy for designing high-performance SIB cathodes.

 

/

返回文章
返回