Cite this article as:

Jacek Winiarski, Piotr Winiarz, and Konrad Świerczek, Multicomponent Gd1−xSmxBa0.5Sr0.5CoCuO5+δ double perovskites as oxygen electrodes for solid oxide cells: Effect of chemical composition and electrospun morphology, Int. J. Miner. Metall. Mater., 32(2025), No. 11, pp.2628-2638. https://doi.org/10.1007/s12613-025-3262-z
Jacek Winiarski, Piotr Winiarz, and Konrad Świerczek, Multicomponent Gd1−xSmxBa0.5Sr0.5CoCuO5+δ double perovskites as oxygen electrodes for solid oxide cells: Effect of chemical composition and electrospun morphology, Int. J. Miner. Metall. Mater., 32(2025), No. 11, pp.2628-2638. https://doi.org/10.1007/s12613-025-3262-z
引用本文 PDF XML SpringerLink

多组分Gd1−xSmxBa0.5Sr0.5CoCuO5+δ双钙钛矿作为固体氧化物电池的氧电极:化学组成和电纺形态的影响

摘要: 多组分Gd1−xSmxBa0.5Sr0.5CoCuO5+δ双钙钛矿在化学成分和形态方面进行了优化,可用作固体氧化物电池中的氧电极。通过溶胶–凝胶法获得了一系列具有不同Gd和Sm阳离子比例的材料,并对其结构和其他物理化学性质进行了研究。研究表明,改变x值以及由此导致的平均离子半径的调整对晶体结构、稳定性以及材料的总电导率和热力学性能有重大影响,其中Gd0.75Sm0.25Ba0.5Sr0.5CoCuO5+δ组成的结果最好。使用所选化合物制备氧电极,可以获得低极化电阻值,如在800°C时为0.086 Ω·cm2。使用La0.8Sr0.2Ga0.8Mg0.2O3−δ作为所有电极的电解质,使用Ce0.8Gd0.2O2−δ电解质作为性能最佳的Gd0.75Sm0.25Ba0.5Sr0.5CoCuO5+δ电极,对电催化活性进行了系统研究。电化学数据采用弛豫时间分布法进行分析。此外,还使用静电纺丝技术研究了电极材料制备方法的影响。最后,在燃料电池和电解槽工作模式下,在具有Ce0.8Gd0.2O2−δ缓冲层的Ni-YSZ(氧化钇稳定氧化锆)阳极支撑电池中测试了Gd0.75Sm0.25Ba0.5Sr0.5CoCuO5+δ电极的性能。使用静电纺丝电极,在700°C下获得462 mW·cm−2的功率密度,在相同温度下1.3 V下的电流密度约为0.2 A·cm−2,表明其性能优于溶胶–凝胶法制备的电极。

 

Multicomponent Gd1−xSmxBa0.5Sr0.5CoCuO5+δ double perovskites as oxygen electrodes for solid oxide cells: Effect of chemical composition and electrospun morphology

Abstract: Multicomponent Gd1−xSmxBa0.5Sr0.5CoCuO5+δ double perovskites are optimized for application in terms of chemical composition and morphology for the use as oxygen electrodes in solid oxide cells. Structural studies of other physicochemical properties are conducted on a series of materials obtained by the sol–gel method with different ratios of Gd and Sm cations. It is documented that changing the x value, and the resulting adjustment of the average ionic radius, have a significant impact on the crystal structure, stability, as well as on the total conductivity and thermomechanical properties of the materials, with the best results obtained for the Gd0.75Sm0.25Ba0.5Sr0.5CoCuO5+δ composition. Oxygen electrodes are prepared using the selected compound, allowing to obtain low polarization resistance values, such as 0.086 Ω·cm2 at 800°C. Systematic studies of electrocatalytic activity are conducted using La0.8Sr0.2Ga0.8Mg0.2O3−δ as the electrolyte for all electrodes, and Ce0.8Gd0.2O2−δ electrolyte for the best performing Gd0.75Sm0.25Ba0.5Sr0.5CoCuO5+δ electrodes. The electrochemical data are analyzed using the distribution of relaxation times method. Also, the influence of the preparation method of the electrode material is investigated using the electrospinning technique. Finally, the performance of the Gd0.75Sm0.25Ba0.5Sr0.5CoCuO5+δ electrodes is tested in a Ni-YSZ (yttria-stabilized zirconia) anode-supported cell with a Ce0.8Gd0.2O2−δ buffer layer, in the fuel cell and electrolyzer operating modes. With the electrospun electrode, a power density of 462 mW·cm−2 is obtained at 700°C, with a current density of ca. 0.2 A·cm−2 at 1.3 V for the electrolysis at the same temperature, indicating better performance compared to the sol–gel-based electrode.

 

/

返回文章
返回