Cite this article as:

Wenjing Li, Renhua Qian, Boxu Dong, Zhou Xu, Changyu Yan, Menghan Yang, Yuxuan Liu, Xinrui Yan, Jiantao Zai, and Xuefeng Qian, Orbital hybridization-engineered electronic structure in multicomponent sulfides boosts the performance of polysulfide/iodide flow batteries, Int. J. Miner. Metall. Mater., 32(2025), No. 11, pp.2814-2820. https://doi.org/10.1007/s12613-025-3268-6
Wenjing Li, Renhua Qian, Boxu Dong, Zhou Xu, Changyu Yan, Menghan Yang, Yuxuan Liu, Xinrui Yan, Jiantao Zai, and Xuefeng Qian, Orbital hybridization-engineered electronic structure in multicomponent sulfides boosts the performance of polysulfide/iodide flow batteries, Int. J. Miner. Metall. Mater., 32(2025), No. 11, pp.2814-2820. https://doi.org/10.1007/s12613-025-3268-6
引用本文 PDF XML SpringerLink

轨道杂化策略调控多元硫化物电子结构提升多硫/碘液流电池性能

摘要: 虽然多硫/碘液流电池(SIFBs)具有高能量密度、低成本和安全性好等优点,但碘电对缓慢的反应动力学制约了其整体性能。多元硫化物被证明是加速I-/I3-氧化还原反应的有效催化剂。同时,多元组分带来的高构型熵可驱动组分元素间的协同效应,为优化催化性能提供了可行路径。基于此,本工作提出了一种通过轨道杂化优化电子密度提升催化活性的策略,进一步发明了用于制备熵增强的AgCuZnSnS4负载石墨毡(ACZTS/GF)电极的原位溶剂热合成方法。该电极表现出了优异的电催化性能,具有提高的电导率和改善的界面电荷转移动力学。电池在20 mA·cm-2电流密度和10%荷电状态下实现了88.5%的高能量效率。此外,电池提供了119.8 mW·cm2的最大功率密度,并表现出优异的长期循环稳定性。这些显著的性能提升源于轨道杂化驱动的电子结构优化和熵效应诱导的协同催化作用。

 

Orbital hybridization-engineered electronic structure in multicomponent sulfides boosts the performance of polysulfide/iodide flow batteries

Abstract: Despite their attractive features of high energy density, low cost, and safety, polysulfide/iodide flow batteries (SIFBs) are hampered by the sluggish kinetics of the iodide redox couple, which restricts overall performance. Multicomponent sulfides are demonstrated as promising catalysts for accelerating \mathrmI^-/\mathrmI_3^- redox reactions. Concurrently, the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements, establishing a viable pathway to optimize catalytic performance. Building on these foundations, this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity. Implementing this concept, we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS4 loaded graphite felt (ACZTS/GF) electrode. The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB. The cell achieves a high energy efficiency of 88.5% at 20 mA·cm−2 with 10% state-of-charge. Furthermore, the battery delivers a maximum power density of 119.8 mW·cm−2 and exhibits excellent long-term cycling stability. These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.

 

/

返回文章
返回