Cite this article as:

Jakub Fudalewski, Piotr Winiarz, and Kun Zheng, Tuning negative thermal expansion in Sm0.85Zn0.15MnO3−δ via synthesis optimization for enhancing the stability of heterostructured solid oxide fuel cell cathodes, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3274-8
Jakub Fudalewski, Piotr Winiarz, and Kun Zheng, Tuning negative thermal expansion in Sm0.85Zn0.15MnO3−δ via synthesis optimization for enhancing the stability of heterostructured solid oxide fuel cell cathodes, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3274-8
引用本文 PDF XML SpringerLink

通过合成优化调节Sm0.85Zn0.15MnO3−δ的负热膨胀特性以增强异质结构固态氧化物燃料电池阴极的稳定性

摘要: 在固体氧化物燃料电池中,尽可能减小阴极与电解质之间的热膨胀系数(TEC)差异对于实现稳定、持久的运行以及高性能至关重要。近年来,具有负热膨胀(NTE)特性的材料因其能够有效调整电极的热力学性能并提高电池的耐久性而受到广泛关注。在这项工作中,首次通过溶胶–凝胶法成功合成了单相NTE钙钛矿材料Sm0.85Zn0.15MnO3−δ (SZM15),消除了通过传统固态反应途径获得的材料中常见的不需要的ZnO相。事实证明,溶胶–凝胶方法显示出诸多优势,包括低成本、稳定性、优异的化学均匀性、精确的成分控制和高相纯度。在优化合成参数后,在400–850°C范围内实现了约−6.5 × 10−6 K−1的负热膨胀系数。然后将SZM15作为添加剂(10wt%–50wt%)掺入SmBa0.5Sr0.5CoCuO5+δ(SBSCCO)阴极中,用La0.8Sr0.2Ga0.8Mg0.2O3−δ(LSGM)电解质调节热力学性能,实现了仅1%的最小TEC失配。值得注意的是,SBSCCO + 10wt% SZM15复合阴极在900°C下的极化电阻最低,为0.019 Ω·cm2,比原始阴极低约70%。在运行100小时后,实现了优异的长期稳定性。此外,在850°C下,Ni-YSZ(氧化钇稳定的氧化锆)|YSZ|GDC10|SBSCCO + 10wt% SZM15阳极支撑燃料电池实现了680 mW·cm−2的高峰值功率密度,突显了掺入NTE材料作为调节热力学性能和提高中温固体氧化物燃料电池(IT SOFC)长期稳定性的有前景的策略的有效性。

 

Tuning negative thermal expansion in Sm0.85Zn0.15MnO3−δ via synthesis optimization for enhancing the stability of heterostructured solid oxide fuel cell cathodes

Abstract: Minimizing the thermal expansion coefficient (TEC) mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable, durable operation and high performance. Recently, materials with negative thermal expansion (NTE) have attracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability. In this work, for the first time, single-phase NTE perovskite Sm0.85Zn0.15MnO3−δ (SZM15) was successfully synthesized via the sol–gel method, eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route. The sol–gel approach proved highly advantageous, offering low cost, robustness, excellent chemical homogeneity, precise compositional control, and high phase purity. After optimization of synthesis parameters, a negative TEC of approximately −6.5 × 10−6 K−1 was achieved in the 400–850°C range. SZM15 was then incorporated as an additive (10wt%–50wt%) into a SmBa0.5Sr0.5CoCuO5+δ (SBSCCO) cathode to tune the thermomechanical properties with a La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) electrolyte, achieving a minimal TEC mismatch of only 1%. Notably, the SBSCCO + 10wt% SZM15 composite cathode exhibited the lowest polarization resistance of 0.019 Ω·cm2 at 900°C, showing approximately 70% lower than that of the pristine cathode. Excellent long-term stability after 100 h of operation was achieved. In addition, a high peak power density of 680 mW·cm−2 was achieved in a Ni-YSZ (yttria-stabilized zirconia)|YSZ|GDC10|SBSCCO + 10wt% SZM15 anode-supported fuel cell at 850°C, highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells (IT-SOFCs).

 

/

返回文章
返回