Cite this article as:

Jiasheng Wang, Jianzhong Jiang, Peter K. Liaw, and Yong Zhang, Properties and performances of high-entropy materials in batteries, Int. J. Miner. Metall. Mater., 32(2025), No. 11, pp.2786-2805. https://doi.org/10.1007/s12613-025-3275-7
Jiasheng Wang, Jianzhong Jiang, Peter K. Liaw, and Yong Zhang, Properties and performances of high-entropy materials in batteries, Int. J. Miner. Metall. Mater., 32(2025), No. 11, pp.2786-2805. https://doi.org/10.1007/s12613-025-3275-7
引用本文 PDF XML SpringerLink

高熵材料在电池中的性能与表现

摘要: 高熵材料是一类具有复杂化学计量比的创新材料,因其多元素组成(五种或更多主要元素,近乎等原子比例)而具有高构型熵、晶格畸变和协同鸡尾酒效应等独特优势,在能量存储应用中受到广泛关注。然而,现有研究中关于电池系统中高熵材料的结构-性能关系的基本理解仍分散不一。本文综述了高熵材料在电池中的应用,提出了一个多维度设计范式,系统整合了正极、负极、电解质和电催化剂的协同机制。深入分析了高熵材料的热力学/动力学稳定原理和结构调控的电化学性能,整合并建立了熵驱动的相稳定性与电荷传输动力学之间的关联。通过归纳锂离子/钠离子/钾离子电池组件的性能基准测试结果,揭示了熵介导的结构优化如何增强循环稳定性和离子导电性。特别地,本文率先将高熵效应与电化学界面进行系统性关联,展示了其在稳定固体-电解质界面和抑制过渡金属溶解方面的独特潜力。同时,讨论了机器学习驱动的组成筛选和可持续制造的新兴机遇,以及工业实施中的关键挑战,包括性能变异性指标和成本-效益分析。本文为将高熵材料推向下一代电池技术提供了基础见解和实践指导。

 

Properties and performances of high-entropy materials in batteries

Abstract: High-entropy materials (HEMs), an innovative class of materials with complex stoichiometry, have recently garnered considerable attention in energy storage applications. While their multi-element compositions (five or more principal elements in nearly equiatomic proportions) confer unique advantages such as high configurational entropy, lattice distortion, and synergistic cocktail effects, the fundamental understanding of structure–property relationships in battery systems remains fragmented across existing studies. This review addresses critical research gaps by proposing a multidimensional design paradigm that systematically integrates synergistic mechanisms spanning cathodes, anodes, electrolytes, and electrocatalysts. We provide an in-depth analysis of HEMs’ thermodynamic/kinetic stabilization principles and structure-regulated electrochemical properties, integrating and establishing quantitative correlations between entropy-driven phase stability and charge transport dynamics. By summarizing the performance benchmarking results of lithium/sodium/potassium-ion battery components, we reveal how entropy-mediated structural tailoring enhances cycle stability and ionic conductivity. Notably, we pioneer the systematic association of high-entropy effects to electrochemical interfaces, demonstrating their unique potential in stabilizing solid-electrolyte interphases and suppressing transition metal dissolution. Emerging opportunities in machine learning-driven composition screening and sustainable manufacturing are discussed alongside critical challenges, including performance variability metrics and cost-benefit analysis for industrial implementation. This work provides both fundamental insights and practical guidelines for advancing HEMs toward next-generation battery technologies.

 

/

返回文章
返回