Cite this article as:

İlker Erkan, and Mehmet Akif Günen, Comparison of Zn recovery prediction from carbonate ores with machine-learning methods, Int. J. Miner. Metall. Mater., (2026). https://doi.org/10.1007/s12613-025-3286-4
İlker Erkan, and Mehmet Akif Günen, Comparison of Zn recovery prediction from carbonate ores with machine-learning methods, Int. J. Miner. Metall. Mater., (2026). https://doi.org/10.1007/s12613-025-3286-4
引用本文 PDF XML SpringerLink

基于机器学习方法对碳酸盐矿石中锌回收率的预测比较

摘要: 本研究针对采用氢氧化钠(NaOH)浸出工艺提取碳酸盐矿石中锌时,锌回收率的预测难题开展研究。这一复杂过程受到矿石成分、表面钝化效应以及非线性反应动力学的影响,给湿法冶金作业中的药剂优化与过程控制带来了较大挑战。为解决这一问题,本研究从已有文献中整合了包含 422 组实验数据的数据集,涵盖矿石成分及工艺参数(如NaOH浓度、浸出时间、温度和液固比)。研究训练了四种回归模型(决策树、神经网络、广义加性模型和随机森林),并采用决定系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和对称平均绝对百分比误差(SMAPE)等性能指标对模型进行了训练和评估。结果表明,随机森林模型的预测精度最优,在测试集上的 R2 值为 0.8541,且误差率最低,证实该模型能够有效捕捉输入变量与锌回收率之间的复杂关联。通过可解释的人工智能,特别是SHAP(SHapley additive exPlanations)分析表明,NaOH浓度、浸出时间以及液固比对锌回收率具有最显著的正向促进作用,而钙、铁和铅等元素则表现出抑制作用。上述研究结果与已知的地球化学行为规律一致,为浸出工艺的药剂优化和过程效率提升提供了重要参考。本研究验证了机器学习在矿物加工领域的实际应用潜力,不仅为非硫化矿锌回收率优化提供了可拓展的技术框架,也为湿法冶金领域的决策制定提供了数据驱动的研究思路。

 

Comparison of Zn recovery prediction from carbonate ores with machine-learning methods

Abstract: This study addresses the challenge of predicting zinc (Zn) recovery from carbonate ores via sodium hydroxide (NaOH) leaching. This complex process influenced by variable ore composition, surface passivation effects, and nonlinear reaction dynamics, which complicate reagent optimization and process control in hydrometallurgical operations. To tackle this, a dataset containing 422 experimental observations was compiled from previous studies, incorporating ore composition and process parameters, such as NaOH concentration, leaching time, temperature, and solid-to-liquid ratio. Four regression models (decision tree, neural network, generalized additive model, and random forest) were trained and evaluated using performance metrics, such as coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and symmetrical mean absolute percentage error (SMAPE). Among these, the random forest model achieved the best predictive accuracy, with an R2 value of 0.8541 on the test set and the lowest error rates, demonstrating its effectiveness in capturing the complex relationships between input variables and Zn recovery. Explainable artificial intelligence, particularly SHapley additive exPlanations (SHAP) analysis, revealed that NaOH concentration, leaching time, and solid-to-liquid ratio had the most positive influence on Zn recovery, whereas elements such as Ca, Fe, and Pb had inhibitory effects. These findings align with known geochemical behavior and provide valuable insights for reagent optimization and process efficiency in leaching processes. This study demonstrates the practical potential of machine learning in mineral processing, offering a scalable framework for optimizing Zn recovery from non-sulfide ores and a data-driven approach to enhance decision-making in hydrometallurgical applications.

 

/

返回文章
返回