Cite this article as:

Richard Li Jie Lee, Wen-Da Oh, Zhiyong Gao, and Yongjun Peng, Radical-induced selective oxidation and depression of pyrite in copper flotation, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3294-4
Richard Li Jie Lee, Wen-Da Oh, Zhiyong Gao, and Yongjun Peng, Radical-induced selective oxidation and depression of pyrite in copper flotation, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3294-4
引用本文 PDF XML SpringerLink

自由基诱导黄铁矿在铜浮选中的选择性氧化与抑制

摘要: 对黄铁矿的选择性抑制仍是铜浮选过程中的一个主要瓶颈,尤其是在处理高黄铁矿含量的矿石、且采用盐水进行浮选时,这一问题更为突出。此类工况下,使用石灰和惰性研磨介质的传统方法往往由于黄铁矿表面强烈的的铜活化作用而无法有效地区分黄铁矿和有价铜矿物。本研究引入了一种新方法,即利用过一硫酸盐(PMS)生成的无机自由基来实现黄铁矿的选择性氧化与抑制。对人工配制的高黄铁矿混合矿石的浮选测试表明,PMS显著降低了黄铁矿的回收率,同时保持甚至提高了黄铜矿的浮选效果。乙二胺四乙酸(EDTA)萃取试验证实了黄铁矿的选择性氧化,并且电子自旋共振(EPR)光谱则明确了羟基(•OH)和硫酸根(\rm SO_4^\text •- )自由基为主要的活性物种。同时,研磨介质和矿物表面释放的铁离子是PMS的关键激活剂。研究还发现,黄铁矿兼具“自由基清除剂”与“活化剂”的双重作用,这使其反应活性极强、易被自由基氧化。该过程会将黄铁矿表面的铜–硫物质转化为氢氧化铜,从而有效地抑制了黄铁矿的浮选。此前的研究多是在简化的活化剂/前驱体体系中利用EPR检测自由基,而本研究则首次在复杂的浮选矿浆中直接检测到无机自由基,为自由基驱动的浮选选择性提供了直接机理证据,从而证明了自由基在工业实际工况下的持久性,为开发更高效、更精准的浮选策略奠定了基础。

 

Radical-induced selective oxidation and depression of pyrite in copper flotation

Abstract: Selective depression of pyrite remains a major bottleneck in copper flotation, particularly when high-pyrite ores are processed and saline water is used. In such environments, conventional approaches using lime and inert grinding media often fail to discriminate effectively between pyrite and valuable copper minerals due to strong copper activation on pyrite surfaces. This study introduced a novel approach using inorganic radicals generated from peroxymonosulfate (PMS) to selectively oxidize and depress pyrite. Flotation tests with synthetic high-pyrite ore blends showed that PMS significantly reduced pyrite recovery while maintaining or improving chalcopyrite flotation. Ethylenediaminetetraacetic acid (EDTA) extraction confirmed selective oxidation of pyrite, and electron paramagnetic resonance (EPR) spectroscopy identified hydroxyl (•OH) and sulfate ( \rm SO_4^\text • - ) radicals as the dominant reactive species. Iron ions from grinding media and mineral surfaces were identified as key activators of PMS. A major insight was pyrite’s dual role, acting both as a radical scavenger and an activator, which made it highly reactive and susceptible to radical-induced oxidation. This process converted surface copper–sulfur species into copper hydroxides, effectively suppressing pyrite flotation. While previous studies have applied EPR to detect radicals in simplified activator/precursor systems, this study provides the first direct mechanistic evidence of radical-driven selectivity in flotation by detecting inorganic radicals in a complex flotation slurry, thereby demonstrating their persistence under industrially relevant conditions and establishing a foundation for more effective and targeted flotation strategies.

 

/

返回文章
返回