Cite this article as:

Yifei Ma, Heyu Wang, Guoxian Chen, Shuai Bai, Yao Liu, Zhong Li, Fuhui Wang, and Dake Xu, Microbially accelerated of AA7075 aluminum alloy in simulated fuel–water conditions, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3305-5
Yifei Ma, Heyu Wang, Guoxian Chen, Shuai Bai, Yao Liu, Zhong Li, Fuhui Wang, and Dake Xu, Microbially accelerated of AA7075 aluminum alloy in simulated fuel–water conditions, Int. J. Miner. Metall. Mater., (2025). https://doi.org/10.1007/s12613-025-3305-5
引用本文 PDF XML SpringerLink

微生物加速AA7075铝合金在模拟燃油-水环境的腐蚀行为与机理

摘要: 飞机燃油系统中的微生物污染及其引发的腐蚀严重威胁飞行安全。揭示燃油降解微生物对油箱材料的腐蚀行为与机理,对于制定有效的防护策略至关重要。本研究针对两种具有代表性的烃类降解菌——柴油食烷菌Alcanivorax dieselolei和氧化微杆菌Microbacterium oxydans,系统研究了它们对AA7075铝合金的在模拟飞机燃油系统中的腐蚀行为与机制。通过生物被膜表征、电化学测试以及表面腐蚀形貌与腐蚀产物分析等系统研究结果表明两种菌株均显著加速了AA7075的腐蚀,具体表现为极化电阻的持续下降和动电位极化曲线的明显右移。微生物的代谢活动导致点蚀电位与腐蚀电位之间的差值减小,表明材料点蚀敏感性增加。腐蚀形貌分析证实,两种微生物均促进了局部点蚀的发展,其中M. oxydans引发的点蚀最为严重,最大点蚀深度达到3.5微米,是无菌体系的1.9倍。航空煤油组分分析表明,两种细菌均加速了C8和C9烷烃的降解,导致燃油中短链烷烃相对含量下降,并伴随着含氧官能团的消失,表明燃油质量发生劣化。本研究结果突显了燃油系统中微生物污染所带来的材料降解与燃油品质下降的双重威胁,强调了针对海洋环境飞机燃油系统制定针对性防护策略的必要性。

 

Microbially accelerated of AA7075 aluminum alloy in simulated fuel–water conditions

Abstract: Microbial contamination and the resulting corrosion in aircraft fuel system pose a serious threat to flight safety. Revealing the corrosion behavior and mechanism of fuel-degrading microorganisms on tank materials is crucial for developing effective mitigation strategies. In this study, the corrosion mechanisms of two representative hydrocarbon-degrading bacteria, Alcanivorax dieselolei and Microbacterium oxydans, toward AA7075 aluminum alloy, were systematically investigated. A combination of biofilm characterization, electrochemical testing, and surface/corrosion product characterization was employed. Both strains markedly accelerated the corrosion of AA7075, as evidence by the progressive decrease in polarization resistance and the pronounced rightward shift of the potentiodynamic polarization curves. Moreover, the difference between the pitting potential (Epit) and the corrosion potential (Ecorr) (ΔE = EpitEcorr) decreased due to microbial activities, indicating a pronounced tendency toward accelerated pitting corrosion. Corrosion morphology analysis revealed that both microbes promoted localized pitting corrosion. Furthermore, analysis of aviation kerosene composition indicated that both bacteria accelerated the degradation of C8 and C9 alkanes. These findings highlight the multiple threats of microbial contamination, material degradation, and fuel quality deterioration in fuel systems and underscore the need for targeted protection strategies for marine aviation operations.

 

/

返回文章
返回