Cite this article as:

Liang Wang, Wenli Song, Zhichao Lu, Suihe Jiang, Xiongjun Liu, Xiaobin Zhang, Hui Wang, Yuan Wu, Dong Ma, and Zhaoping Lü, Microalloying effect of Y on magnetocaloric properties of GdTbDyHo rare earth high entropy alloys, Int. J. Miner. Metall. Mater., 33(2026), No. 3, pp.899-907. https://doi.org/10.1007/s12613-025-3307-3
Liang Wang, Wenli Song, Zhichao Lu, Suihe Jiang, Xiongjun Liu, Xiaobin Zhang, Hui Wang, Yuan Wu, Dong Ma, and Zhaoping Lü, Microalloying effect of Y on magnetocaloric properties of GdTbDyHo rare earth high entropy alloys, Int. J. Miner. Metall. Mater., 33(2026), No. 3, pp.899-907. https://doi.org/10.1007/s12613-025-3307-3
引用本文 PDF XML SpringerLink

Y 微合金化对GdTbDyHo 稀土高熵合金磁热性能的影响

摘要: 稀土高熵合金因重稀土4f电子赋予的大磁矩与可调谐交换相互作用,在宽温区展现出优异磁热性能,备受研究关注。但该类合金难以同时提升磁熵变、工作温度区间及制冷能力,成为其应用瓶颈。本文提出一种经济可行、可规模化的非磁性微合金化策略,旨在解决这一难题。本文制备了一系列不同Y含量的GdTbDyHo稀土高熵合金,结合相组成分析、微观组织观察及磁热性能测试,系统探究Y微合金化对合金相结构、微观形貌及磁热性能的影响规律。结果表明,Y含量为0.4at%时合金综合性能最优:与未加Y的基体合金相比,峰值磁熵变从8.2 J·kg−1·K−1提升至8.7 J·kg−1·K−1,工作温度区间从77 K拓宽至89 K,使5 T磁场下的制冷能力从631 J·kg−1提升23%至774 J·kg−1。性能提升的机理为:Y均匀固溶于合金的六方晶格中,破坏了4f–4f交换相互作用并诱导形成局部短程有序结构,进而削弱反铁磁耦合作用,加快反铁磁-铁磁转变动力学过程,同时拓宽工作温度区间。尤为重要的是,该显著性能提升是在维持合金结构稳定性及磁转变温度恒定的前提下实现的。所有Y微合金化样品均维持单相密排六方(HCP)结构,其奈尔温度(TN)稳定在约195 K。综上,本研究证实非磁性Y微合金化是一种经济可行、可规模化且高效的策略,可用于精细调控并提升稀土高熵合金的磁热性能,为新一代高性能磁制冷材料的开发提供了重要理论与实验指导。

 

Microalloying effect of Y on magnetocaloric properties of GdTbDyHo rare earth high entropy alloys

Abstract: High-entropy magnetocaloric alloys offer exceptional compositional flexibility and stability for magnetic refrigeration. However, enhancing their magnetic entropy change, working temperature range, and refrigeration capacity remains challenging. In this study, we demonstrate that microalloying GdTbDyHo with only 0.4at% nonmagnetic Y effectively addresses this limitation. Our analysis indicates that Y uniformly dissolves into the hexagonal matrix lattice, disrupting the 4f–4f exchange interactions and inducing a local short-range order. This weakens the antiferromagnetic coupling, accelerates the antiferromagnetic–ferromagnetic transition, and broadens its range. Consequently, the peak magnetic entropy change increases from 8.2 to 8.7 J·kg−1·K−1, the working temperature range expands from 77 to 89 K, and the refrigeration capacity improves by 23%, reaching 774 J·kg−1 (5 T) relative to the Y-free alloy, while the Néel temperature remains constant (~195 K). This study establishes nonmagnetic microalloying as a cost-effective and scalable strategy for designing high-performance magnetocaloric materials.

 

/

返回文章
返回