Ling Wang, Zhichun Mu, and Hui Guo, Application of support vector machine in the prediction of mechanical property of steel materials, J. Univ. Sci. Technol. Beijing, 13(2006), No. 6, pp. 512-515. https://doi.org/10.1016/S1005-8850(06)60104-7
Cite this article as:
Ling Wang, Zhichun Mu, and Hui Guo, Application of support vector machine in the prediction of mechanical property of steel materials, J. Univ. Sci. Technol. Beijing, 13(2006), No. 6, pp. 512-515. https://doi.org/10.1016/S1005-8850(06)60104-7
Ling Wang, Zhichun Mu, and Hui Guo, Application of support vector machine in the prediction of mechanical property of steel materials, J. Univ. Sci. Technol. Beijing, 13(2006), No. 6, pp. 512-515. https://doi.org/10.1016/S1005-8850(06)60104-7
Citation:
Ling Wang, Zhichun Mu, and Hui Guo, Application of support vector machine in the prediction of mechanical property of steel materials, J. Univ. Sci. Technol. Beijing, 13(2006), No. 6, pp. 512-515. https://doi.org/10.1016/S1005-8850(06)60104-7
The investigation of the influences of important parameters including steel chemical composition and hot rolling parameters on the mechanical properties of steel is a key for the systems that are used to predict mechanical properties. To improve the prediction accuracy, support vector machine was used to predict the mechanical properties of hot-rolled plain carbon steel Q235B. Support vector machine is a novel machine learning method, which is a powerful tool used to solve the problem characterized by small sample, nonlinearity, and high dimension with a good generalization performance. On the basis of the data collected from the supervisor of hot-rolling process, the support vector regression algorithm was used to build prediction models, and the off-line simulation indicates that predicted and measured results are in good agreement.
The investigation of the influences of important parameters including steel chemical composition and hot rolling parameters on the mechanical properties of steel is a key for the systems that are used to predict mechanical properties. To improve the prediction accuracy, support vector machine was used to predict the mechanical properties of hot-rolled plain carbon steel Q235B. Support vector machine is a novel machine learning method, which is a powerful tool used to solve the problem characterized by small sample, nonlinearity, and high dimension with a good generalization performance. On the basis of the data collected from the supervisor of hot-rolling process, the support vector regression algorithm was used to build prediction models, and the off-line simulation indicates that predicted and measured results are in good agreement.