摘要:
Three-dimensional normal grain growth was appropriately simulated using a Potts model Monte Carlo algorithm. The quasi-stationary grain size distribution obtained from simulation agreed well with the experimental result of pure iron. The Weibull function with a parameter
β=2.77 and the Yu-Liu function with a parameter
v =2.71 fit the quasi-stationary grain size distribution well. The grain volume distribution is a function that decreased exponentially with increasing grain volume. The distribution of boundary area of grains has a peak at
S/〈
S〉=0.5, where
S is the boundary area of a grain and 〈
S〉 is the mean boundary area of all grains in the system. The lognormal function fits the face number distribution well and the peak of the face number distribution is
f=10. The mean radius of
f-faced grains is not proportional to the face number, but appears to be related by a curve convex upward. In the 2D cross-section, both the perimeter law and the Aboav-Weaire law are observed to hold.