The semisolid AlSi7Mg alloy slurry with large capacity was prepared by low superheat pouring and week traveling-wave electromagnetic stirring. The effects of electromagnetic stirring power and frequency on the shape and distribution of primary α-A1 grains in the AlSi7Mg alloy slurry were discussed. The experimental results show that the AlSi7Mg alloy slurry with fine and spherical primary α-A1 grains distributed homogeneously can be obtained. Under the condition of low superheat pouring and week traveling-wave electromagnetic stirring, when the pouring temperature is 630℃, raising the stirring power or frequency appropriately can gain a better shape of primary α-Al grains; but if the stirring power or frequency is increased to a certain value (1.72 kW or 10 Hz), the shape of primary α-A1 grains cannot be obviously improved and spherical primary α-Al grains distributed homogeneously can be still obtained.
The semisolid AlSi7Mg alloy slurry with large capacity was prepared by low superheat pouring and week traveling-wave electromagnetic stirring. The effects of electromagnetic stirring power and frequency on the shape and distribution of primary α-A1 grains in the AlSi7Mg alloy slurry were discussed. The experimental results show that the AlSi7Mg alloy slurry with fine and spherical primary α-A1 grains distributed homogeneously can be obtained. Under the condition of low superheat pouring and week traveling-wave electromagnetic stirring, when the pouring temperature is 630℃, raising the stirring power or frequency appropriately can gain a better shape of primary α-Al grains; but if the stirring power or frequency is increased to a certain value (1.72 kW or 10 Hz), the shape of primary α-A1 grains cannot be obviously improved and spherical primary α-Al grains distributed homogeneously can be still obtained.