Jian-sheng Wang, Hui-min Meng, Hong-ying Yu, Zi-shuan Fan, and Dong-bai Sun, Characterization and wear behavior of WC-0.8Co coating on cast steel rolls by electro-spark deposition, Int. J. Miner. Metall. Mater., 16(2009), No. 6, pp. 707-713. https://doi.org/10.1016/S1674-4799(10)60017-9
Cite this article as:
Jian-sheng Wang, Hui-min Meng, Hong-ying Yu, Zi-shuan Fan, and Dong-bai Sun, Characterization and wear behavior of WC-0.8Co coating on cast steel rolls by electro-spark deposition, Int. J. Miner. Metall. Mater., 16(2009), No. 6, pp. 707-713. https://doi.org/10.1016/S1674-4799(10)60017-9
Jian-sheng Wang, Hui-min Meng, Hong-ying Yu, Zi-shuan Fan, and Dong-bai Sun, Characterization and wear behavior of WC-0.8Co coating on cast steel rolls by electro-spark deposition, Int. J. Miner. Metall. Mater., 16(2009), No. 6, pp. 707-713. https://doi.org/10.1016/S1674-4799(10)60017-9
Citation:
Jian-sheng Wang, Hui-min Meng, Hong-ying Yu, Zi-shuan Fan, and Dong-bai Sun, Characterization and wear behavior of WC-0.8Co coating on cast steel rolls by electro-spark deposition, Int. J. Miner. Metall. Mater., 16(2009), No. 6, pp. 707-713. https://doi.org/10.1016/S1674-4799(10)60017-9
To prepare high wear resistance and high hardness coatings, electro-spark deposition was adopted for depositing an electrode of a mixture of 92wt%WC+8wt%Co on a cast steel roll substrate. The coating was characterized by classical X-ray diffractometer (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The results indicate that the coating shows nanosized particulate structure and dendritic structure including columnar structure and equiaxed structure. The primary phases of the coating contain Fe3W3C, Co3W3C, Fe2C and Si2W. The coating has a low friction coefficient of 0.13, its average wear-resistance is 3.3 times that of the cast steel roll substrate and the main mechanism is abrasive wear. The maximum microhardness value of the coating is about 1573.9 Hv0.3. The study reveals that the electro-spark deposition process has the characteristic of better coating quality and the coating has higher wear resistance and hardness.
To prepare high wear resistance and high hardness coatings, electro-spark deposition was adopted for depositing an electrode of a mixture of 92wt%WC+8wt%Co on a cast steel roll substrate. The coating was characterized by classical X-ray diffractometer (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The results indicate that the coating shows nanosized particulate structure and dendritic structure including columnar structure and equiaxed structure. The primary phases of the coating contain Fe3W3C, Co3W3C, Fe2C and Si2W. The coating has a low friction coefficient of 0.13, its average wear-resistance is 3.3 times that of the cast steel roll substrate and the main mechanism is abrasive wear. The maximum microhardness value of the coating is about 1573.9 Hv0.3. The study reveals that the electro-spark deposition process has the characteristic of better coating quality and the coating has higher wear resistance and hardness.