摘要:
The effect of HDDR (hydrogenation-decomposition-desorption-recombination process) treating conditions on magnetic anisotropy of Nd
13Fe
balCo
17B
7Ga
1Zr
0.1 powders has been studied. It is found that increasing recombination temperature is effective for magnetic anisotropy formation, but at the cost of reducing the coercive force. The microstructure analysis (TEM) indicates that the NdFeB recombination nucleation takes place markedly during the transition range from decomposition stage to recombination stage, in which both temperature and H
2 pressure change sharply. In order to create a more stable treatment condition for recombination nucleation, a modified HDDR process is established in which the conventional continuous transition range is divided into several stages. The experimental results have proved that such a process can effectively enhance the remanence of the magnet powders with high certainty, while only cause a little reduction in coercivity.