Laboratory of Special Ceramics and Powder Metallurgy, Materials Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China
In order to obtain thermoelectric materials with high figure of merit, the concept of Hollow (Vacuum) Quantum Structure or Effect and related thermoelectric materials design were proposed. To demonstrate the theory, the materials of (Bi0.15Sb0.85)2Te3 with porous structure have been fabricated. Their thermoelectric properties and the microstructure were investigated and compared with their density structure. It was found that the porous structure could improve their properties greatly.
Laboratory of Special Ceramics and Powder Metallurgy, Materials Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China
In order to obtain thermoelectric materials with high figure of merit, the concept of Hollow (Vacuum) Quantum Structure or Effect and related thermoelectric materials design were proposed. To demonstrate the theory, the materials of (Bi0.15Sb0.85)2Te3 with porous structure have been fabricated. Their thermoelectric properties and the microstructure were investigated and compared with their density structure. It was found that the porous structure could improve their properties greatly.