留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 11 Issue 3
Jun.  2004
数据统计

分享

计量
  • 文章访问数:  390
  • HTML全文浏览量:  101
  • PDF下载量:  22
  • 被引次数: 0
Sen Wu and Xuedong Gao, CABOSFV algorithm for high dimensional sparse data clustering, J. Univ. Sci. Technol. Beijing, 11(2004), No. 3, pp. 283-288.
Cite this article as:
Sen Wu and Xuedong Gao, CABOSFV algorithm for high dimensional sparse data clustering, J. Univ. Sci. Technol. Beijing, 11(2004), No. 3, pp. 283-288.
引用本文 PDF XML SpringerLink
Automation

CABOSFV algorithm for high dimensional sparse data clustering

  • 通讯作者:

    Sen Wu    E-mail: wusen@manage.ustb.edu.cn

  • An algorithm, Clustering Algorithm Based On Sparse Feature Vector (CABOSFV), was proposed for the high dimensional clustering of binary sparse data. This algorithm compresses the data effectively by using a tool ‘Sparse Feature Vector’, thus reduces the data scale enormously, and can get the clustering result with only one data scan. Both theoretical analysis and empirical tests showed that CABOSFV is of low computational complexity. The algorithm finds clusters in high dimensional large datasets efficiently and handles noise effectively.
  • Automation

    CABOSFV algorithm for high dimensional sparse data clustering

    + Author Affiliations
    • An algorithm, Clustering Algorithm Based On Sparse Feature Vector (CABOSFV), was proposed for the high dimensional clustering of binary sparse data. This algorithm compresses the data effectively by using a tool ‘Sparse Feature Vector’, thus reduces the data scale enormously, and can get the clustering result with only one data scan. Both theoretical analysis and empirical tests showed that CABOSFV is of low computational complexity. The algorithm finds clusters in high dimensional large datasets efficiently and handles noise effectively.
    • loading

    Catalog


    • /

      返回文章
      返回