Material Science and Engineering School, University of Science and Technique Beijing, Beijing 100083, China
Metal Forming Department Northeastern University, Shenyang 110006, China
Anshan Automobile Fittings Factory, Anshan 114014, China
中文摘要
The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction. The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.
The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction. The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.