Cooled in water after the isothermal relaxation of deformed austenite for different timea, a Nb-bearing microalloyed steel always exhibits synthetic microstructures of bainitic ferrite, granular bainite and acicular ferrite. When these samples were reheated to and held at 650 or 700℃, the non-equilibrious microstructures tend to evolve into equilibrious ones. The sample relaxed for 60 s displays the highest thermostability, while the microstructure evolution is the quickest in the sample relaxed for 1000 s even though it is the softest before reheating. Softening is not a single process occurring during reheating, in which the hardness fluctuates with time. There are two peaks in the hardness-time curve of each sample having undergone relaxation, while a single peak occurs in the curve of the sample having not been relaxed. Pre-strain accelerates the evolution process. These results indicate that the thermostability of microstructures is determined by their history of formation to a considerable degree.
Cooled in water after the isothermal relaxation of deformed austenite for different timea, a Nb-bearing microalloyed steel always exhibits synthetic microstructures of bainitic ferrite, granular bainite and acicular ferrite. When these samples were reheated to and held at 650 or 700℃, the non-equilibrious microstructures tend to evolve into equilibrious ones. The sample relaxed for 60 s displays the highest thermostability, while the microstructure evolution is the quickest in the sample relaxed for 1000 s even though it is the softest before reheating. Softening is not a single process occurring during reheating, in which the hardness fluctuates with time. There are two peaks in the hardness-time curve of each sample having undergone relaxation, while a single peak occurs in the curve of the sample having not been relaxed. Pre-strain accelerates the evolution process. These results indicate that the thermostability of microstructures is determined by their history of formation to a considerable degree.