2018, 25(2): 173-180.
doi: 10.1007/s12613-018-1560-4
摘要:
Printed circuit boards (PCBs) contain many toxic substances as well as valuable metals, e.g., lead (Pb) and tin (Sn). In this study, a novel technology, named supergravity, was used to separate different mass ratios of Pb and Sn from Pb-Sn alloys in PCBs. In a supergravity field, the liquid metal phase can permeate from solid particles. Hence, temperatures of 200, 280, and 400℃ were chosen to separate Pb and Sn from PCBs. The results depicted that gravity coefficient only affected the recovery rates of Pb and Sn, whereas it had little effect on the mass ratios of Pb and Sn in the obtained alloys. With an increase in gravity coefficient, the recovery values of Pb and Sn in each step of the separation process increased. In the single-step separation process, the mass ratios of Pb and Sn in Pb-Sn alloys were 0.55, 0.40, and 0.64 at 200, 280, and 400℃, respectively. In the two-step separation process, the mass ratios were 0.12 and 0.55 at 280 and 400℃, respectively. Further, the mass ratio was observed to be 0.76 at 400℃ in the three-step separation process. This process provides an innovative approach to the recycling mechanism of Pb and Sn from PCBs.