留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(13)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  950
  • HTML全文浏览量:  354
  • PDF下载量:  41
  • 被引次数: 0
Zhiwen Hou, Yanwu Dong, Zhouhua Jiang, Zhihao Hu, Limeng Liu,  and Kunjie Tian, Effect of an external magnetic field on improved electroslag remelting cladding process, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1511-1521. https://doi.org/10.1007/s12613-021-2277-3
Cite this article as:
Zhiwen Hou, Yanwu Dong, Zhouhua Jiang, Zhihao Hu, Limeng Liu,  and Kunjie Tian, Effect of an external magnetic field on improved electroslag remelting cladding process, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1511-1521. https://doi.org/10.1007/s12613-021-2277-3
引用本文 PDF XML SpringerLink
研究论文封面文章

外磁场对改进型电渣重熔制备复合轧辊工艺的影响

  • 通讯作者:

    董艳伍    E-mail: dongyw@smm.neu.edu.cn

文章亮点

  • (1)揭示了棒状电极电渣重熔制备复合轧辊工艺温度场非均匀的原因。
  • (2)阐明了外磁场对棒状电极电渣重熔制备复合轧辊工艺多物理场的作用机理。
  • (3)分析了环形电流对外磁场强度、流动及界面温度的影响规律。
  • 界面温度周向均匀性对复合轧辊的界面结合质量至关重要。本文提出一种施加外磁场的改进型电渣重熔制备复合轧辊工艺以改善复合轧辊界面结合质量的周向均匀性,该工艺包含基于导电结晶器的传统电渣重熔制备复合轧辊供电回路和外线圈供电回路。提出了包含多物理场的全面3D模型以研究外磁场对多物理场和界面温度均匀性的影响规律。模拟结果表明非均匀的焦耳热场和流场是传统电渣重熔制备的复合轧辊界面不均匀的根本原因。因此,在改进型电渣重熔制备复合轧辊工艺中,外线圈内逆时针方向的电流产生了沿z轴方向的磁场感应强度 B coil,该轴向 B coil与渣池内径向电流共同产生旋转电磁力。旋转电磁力推动渣池进行旋转流动,改善了渣池的有效热导率的周向均匀性,最终温度场和界面温度的周向均匀性得到显著改善。此外,物理模型的模拟结果与实验结果具有良好的一致性,证实了改进型工业电渣重熔制备复合轧辊模型的准确性。因此,改进型工艺十分适合工业生产界面结合质量均匀的复合轧辊。
  • Research Article

    Effect of an external magnetic field on improved electroslag remelting cladding process

    + Author Affiliations
    • Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls. Therefore, this study proposes an improved electroslag remelting cladding (ESRC) process using an external magnetic field to improve the uniformity of the interface temperature of compound rolls. The improved ESRC comprises a conventional ESRC circuit and an external coil circuit. A comprehensive 3D model, including multi-physics fields, is proposed to study the effect of external magnetic fields on the multi-physics fields and interface temperature uniformity. The simulated results demonstrate that the non-uniform Joule heat and flow fields cause a non-uniform interface temperature in the conventional ESRC. As for the improved ESRC, the magnetic flux density ( B coil) along the z-axis is produced by an anticlockwise current of the external coil. The rotating Lorentz force is generated from the interaction between the radial current and axial B coil. Therefore, the slag pool flows clockwise, which enhances circumferential effective thermal conductivity. As a result, the uniformity of the temperature field and interface temperature improve. In addition, the magnetic flux density and rotational speed of the simulated results are in good agreement with those of the experimental results, which verifies the accuracy of the improved ESRC model. Therefore, an improved ESRC is efficient for industrial production of the compound roll with a uniform interface bonding quality.
    • loading
    • [1]
      H.G. Fu, Q. Xiao, and J. Xing, Manufacture of centrifugal cast high speed steel rolls for wire rod mills, Ironmaking Steelmaking, 31(2004), No. 5, p. 389. doi: 10.1179/030192304225019252
      [2]
      Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, and D.Z. Li, Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls, J. Mater. Process. Technol., 210(2010), No. 3, p. 536. doi: 10.1016/j.jmatprotec.2009.10.017
      [3]
      A. Cofiño-Villar, F. Alvarez-Antolin, and J. Asensio-Lozano, Enhancement of the quality of the shell-core bond interface in duplex work rolls manufactured by centrifugal casting used in hot strip mills, Materials, 12(2019), No. 8, art. No. 1304. doi: 10.3390/ma12081304
      [4]
      B.I. Medovar, L.B. Medovar, A.V. Chemets, V.B. Shabanov, and O.V. Sviridov, Ukrainian ESS LM HSS rolls for hot strip mills, [in] 42nd Mechanical Working and Steel Processing Conference Proceedings, Toronto, 2000, p. 647.
      [5]
      W.M. Li, X. Geng, H.B. Li, G.S. Yi, H. Feng, and Z.H. Jiang, A comprehensive electromagnetic model of electrical slag surfacing with liquid metal process for preparing compound rolls, J. Iron Steel Res. Int., 19(2012), No. S2, p. 921.
      [6]
      Z.H. Jiang, Y.L. Cao, Y.W. Dong, D. Hou, H.B. Cao, and J.X. Fan, Numerical simulation of the electroslag casting with liquid metal for producing composite roll, Steel Res. Int., 87(2016), No. 6, p. 699. doi: 10.1002/srin.201500197
      [7]
      Y. Sano, T. Hattori, and M. Haga, Characteristics of high-carbon high speed steel rolls for hot strip mill, ISIJ Int., 32(1992), No. 11, p. 1194. doi: 10.2355/isijinternational.32.1194
      [8]
      M. Hashimoto, S. Otomo, K. Yoshida, K. Kimura, R. Kurahashi, T. Kawakami, and T. Kouga, Development of high-performance roll by continuous pouring process for cladding, ISIJ Int., 32(1992), No. 11, p. 1202. doi: 10.2355/isijinternational.32.1202
      [9]
      M. Hashimoto, T. Tanaka, T. Inoue, M. Yamashita, R. Kurahashi, and R. Terakado, Development of cold rolling mill rolls of high speed steel type by using continuous pouring process for cladding, ISIJ Int., 42(2002), No. 9, p. 982. doi: 10.2355/isijinternational.42.982
      [10]
      S.V. Tomilenko and Y.M. Kuskov, Special features of melting of parent metal in electroslag surfacing in a current-supplying solidification mould, Weld. Int., 14(2000), No. 11, p. 893. doi: 10.1080/09507110009549288
      [11]
      S.V. Tomilenko and Y.M. Kuskov, Using direct and alternating current with reduced frequency in surfacing in sectional current-supplying solidification moulds, Weld. Int., 16(2002), No. 7, p. 572. doi: 10.1080/09507110209549579
      [12]
      Y.M. Kuskov, Special features of electroslag surfacing with a granulated filler in a current-supplying solidification mould, Weld. Int., 18(2004), No. 2, p. 160. doi: 10.1533/wint.2004.3267
      [13]
      Y.L. Cao, Z.H. Jiang, Y.W. Dong, G.Q. Li, Z.W. Hou, and Q. Wang, Research on the bimetallic composite roll produced by a new electroslag cladding method: Microstructure and property of the bonding interface, Ironmaking Steelmaking, 47(2020), No. 6, p. 686. doi: 10.1080/03019233.2019.1575038
      [14]
      Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Research on the bonding interface of high speed steel/ductile cast iron composite roll manufactured by an improved electroslag cladding method, Metals, 8(2018), No. 6, art. No. 390. doi: 10.3390/met8060390
      [15]
      Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Research on the bimetallic composite roll produced by an improved electroslag cladding method: Mathematical simulation of the power supply circuits, ISIJ Int., 58(2018), No. 6, p. 1052. doi: 10.2355/isijinternational.ISIJINT-2017-703
      [16]
      M. Shimizu, O. Shitamura, S. Matsuo, T. Kamata, and Y. Kondo, Development of high performance new composite roll, ISIJ Int., 32(1992), No. 11, p. 1244. doi: 10.2355/isijinternational.32.1244
      [17]
      Y. Asai, M. Hori, and N. Tokumitsu, Method of Electroslag Surfacing of Components Having a Cylindrical Surface, US Patent, US04373128A, 1983.
      [18]
      K. Hideyo, K, Yasuo, and A. Kimihiko, Method and Apparatus for Manufacturing a Composite Steel Ingot, US Patent, US04544019A, 1985.
      [19]
      C.B. Shi, Deoxidation of electroslag remelting (ESR)–A review, ISIJ Int., 60(2020), No. 6, p. 1083. doi: 10.2355/isijinternational.ISIJINT-2019-661
      [20]
      C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng, Review on desulfurization in electroslag remelting, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 18. doi: 10.1007/s12613-020-2075-3
      [21]
      S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, and X.Y. Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 291. doi: 10.1007/s12613-019-1737-5
      [22]
      Q. Wang, R. Lu, Z.Y. Chen, G.Q. Li, and Y.X. Yang, CFD and experimental investigation of desulfurization of rejected electrolytic manganese metal in electroslag remelting process, Metall. Mater. Trans. B, 51(2020), No. 2, p. 649. doi: 10.1007/s11663-019-01766-y
      [23]
      Q. Wang, Y. Liu, G.Q. Li, Y.M. Gao, Z. He, and B.K. Li, Predicting transfer behavior of oxygen and sulfur in electroslag remelting process, Appl. Therm. Eng., 129(2018), p. 378. doi: 10.1016/j.applthermaleng.2017.10.062
      [24]
      X.F. Shi, L.Z. Chang, and J.J. Wang, Effect of ultrasonic power introduced by a mold copper plate on the solidification process, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 139. doi: 10.1007/s12613-017-1388-3
      [25]
      L. Rao, S.J. Wang, J.H. Zhao, M.P. Geng, and G. Ding, Experimental and simulation studies on fabricating GCr15/40Cr bimetallic compound rollers using electroslag surfacing with liquid metal method, J. Iron Steel Res. Int., 21(2014), No. 9, p. 869. doi: 10.1016/S1006-706X(14)60155-2
      [26]
      D.B. Jiang and M.Y. Zhu, Flow and solidification in billet continuous casting machine with dual electromagnetic stirrings of mold and the final solidification, Steel Res. Int., 86(2015), No. 9, p. 993. doi: 10.1002/srin.201400281
      [27]
      H. Wang, Y.B. Zhong, L.C. Dong, Z. Shen, Q. Li, W.Q. Li, T.X. Zheng, W.L. Ren, Z.S. Lei, and Z.M. Ren, Coupled 3D numerical model of droplet evolution behaviors during the magnetically controlled electroslag remelting process, JOM, 70(2018), No. 12, p. 2917. doi: 10.1007/s11837-018-3029-3
      [28]
      K.I. Miyazawa, T. Fukaya, S. Asai, I. Muchi, M. Choudhary, and J. Szekely, The effect of an externally imposed magnetic field on the behavior of a laboratory scale ESR system, ISIJ Int., 25(1985), No. 5, p. 386. doi: 10.2355/isijinternational1966.25.386
      [29]
      A. Mitchell and B. Hernandez-Morales, Electromagnetic stirring with alternating current during electroslag remelting, Metall. Trans. B, 21(1990), No. 4, p. 723. doi: 10.1007/BF02654251
      [30]
      B.K. Li, F. Wang, and F. Tsukihashi, Current, magnetic field and joule heating in electroslag remelting processes, ISIJ Int., 52(2012), No. 7, p. 1289. doi: 10.2355/isijinternational.52.1289
      [31]
      X.H. Wang and Y. Li, A comprehensive 3D mathematical model of the electroslag remelting process, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1837. doi: 10.1007/s11663-015-0342-x
      [32]
      ANSYS, Inc 15.0, August 2013. Canonsburg, USA.
      [33]
      Y.W. Dong, Mathematical Modeling of Solidification During Electroslag Remelting Process and Development of New Slags [Dissertation], Northeastern University, Shenyang, 2008, p. 42.
      [34]
      Y.W. Dong, Z.H. Jiang, J.X. Fan, Y.L. Cao, D. Hou, and H.B. Cao, Comprehensive mathematical model for simulating electroslag remelting, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1475. doi: 10.1007/s11663-015-0546-0
      [35]
      O. Kazumi, Electro-Slag remelting slag, B. Jpn. Inst. Met., 18(1979), No. 10, p. 684. doi: 10.2320/materia1962.18.684

    Catalog


    • /

      返回文章
      返回