Cite this article as: |
Zhiwen Hou, Yanwu Dong, Zhouhua Jiang, Zhihao Hu, Limeng Liu, and Kunjie Tian, Effect of an external magnetic field on improved electroslag remelting cladding process, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1511-1521. https://doi.org/10.1007/s12613-021-2277-3 |
董艳伍 E-mail: dongyw@smm.neu.edu.cn
[1] |
H.G. Fu, Q. Xiao, and J. Xing, Manufacture of centrifugal cast high speed steel rolls for wire rod mills, Ironmaking Steelmaking, 31(2004), No. 5, p. 389. doi: 10.1179/030192304225019252
|
[2] |
Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, and D.Z. Li, Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls, J. Mater. Process. Technol., 210(2010), No. 3, p. 536. doi: 10.1016/j.jmatprotec.2009.10.017
|
[3] |
A. Cofiño-Villar, F. Alvarez-Antolin, and J. Asensio-Lozano, Enhancement of the quality of the shell-core bond interface in duplex work rolls manufactured by centrifugal casting used in hot strip mills, Materials, 12(2019), No. 8, art. No. 1304. doi: 10.3390/ma12081304
|
[4] |
B.I. Medovar, L.B. Medovar, A.V. Chemets, V.B. Shabanov, and O.V. Sviridov, Ukrainian ESS LM HSS rolls for hot strip mills, [in] 42nd Mechanical Working and Steel Processing Conference Proceedings, Toronto, 2000, p. 647.
|
[5] |
W.M. Li, X. Geng, H.B. Li, G.S. Yi, H. Feng, and Z.H. Jiang, A comprehensive electromagnetic model of electrical slag surfacing with liquid metal process for preparing compound rolls, J. Iron Steel Res. Int., 19(2012), No. S2, p. 921.
|
[6] |
Z.H. Jiang, Y.L. Cao, Y.W. Dong, D. Hou, H.B. Cao, and J.X. Fan, Numerical simulation of the electroslag casting with liquid metal for producing composite roll, Steel Res. Int., 87(2016), No. 6, p. 699. doi: 10.1002/srin.201500197
|
[7] |
Y. Sano, T. Hattori, and M. Haga, Characteristics of high-carbon high speed steel rolls for hot strip mill, ISIJ Int., 32(1992), No. 11, p. 1194. doi: 10.2355/isijinternational.32.1194
|
[8] |
M. Hashimoto, S. Otomo, K. Yoshida, K. Kimura, R. Kurahashi, T. Kawakami, and T. Kouga, Development of high-performance roll by continuous pouring process for cladding, ISIJ Int., 32(1992), No. 11, p. 1202. doi: 10.2355/isijinternational.32.1202
|
[9] |
M. Hashimoto, T. Tanaka, T. Inoue, M. Yamashita, R. Kurahashi, and R. Terakado, Development of cold rolling mill rolls of high speed steel type by using continuous pouring process for cladding, ISIJ Int., 42(2002), No. 9, p. 982. doi: 10.2355/isijinternational.42.982
|
[10] |
S.V. Tomilenko and Y.M. Kuskov, Special features of melting of parent metal in electroslag surfacing in a current-supplying solidification mould, Weld. Int., 14(2000), No. 11, p. 893. doi: 10.1080/09507110009549288
|
[11] |
S.V. Tomilenko and Y.M. Kuskov, Using direct and alternating current with reduced frequency in surfacing in sectional current-supplying solidification moulds, Weld. Int., 16(2002), No. 7, p. 572. doi: 10.1080/09507110209549579
|
[12] |
Y.M. Kuskov, Special features of electroslag surfacing with a granulated filler in a current-supplying solidification mould, Weld. Int., 18(2004), No. 2, p. 160. doi: 10.1533/wint.2004.3267
|
[13] |
Y.L. Cao, Z.H. Jiang, Y.W. Dong, G.Q. Li, Z.W. Hou, and Q. Wang, Research on the bimetallic composite roll produced by a new electroslag cladding method: Microstructure and property of the bonding interface, Ironmaking Steelmaking, 47(2020), No. 6, p. 686. doi: 10.1080/03019233.2019.1575038
|
[14] |
Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Research on the bonding interface of high speed steel/ductile cast iron composite roll manufactured by an improved electroslag cladding method, Metals, 8(2018), No. 6, art. No. 390. doi: 10.3390/met8060390
|
[15] |
Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Research on the bimetallic composite roll produced by an improved electroslag cladding method: Mathematical simulation of the power supply circuits, ISIJ Int., 58(2018), No. 6, p. 1052. doi: 10.2355/isijinternational.ISIJINT-2017-703
|
[16] |
M. Shimizu, O. Shitamura, S. Matsuo, T. Kamata, and Y. Kondo, Development of high performance new composite roll, ISIJ Int., 32(1992), No. 11, p. 1244. doi: 10.2355/isijinternational.32.1244
|
[17] |
Y. Asai, M. Hori, and N. Tokumitsu, Method of Electroslag Surfacing of Components Having a Cylindrical Surface, US Patent, US04373128A, 1983.
|
[18] |
K. Hideyo, K, Yasuo, and A. Kimihiko, Method and Apparatus for Manufacturing a Composite Steel Ingot, US Patent, US04544019A, 1985.
|
[19] |
C.B. Shi, Deoxidation of electroslag remelting (ESR)–A review, ISIJ Int., 60(2020), No. 6, p. 1083. doi: 10.2355/isijinternational.ISIJINT-2019-661
|
[20] |
C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng, Review on desulfurization in electroslag remelting, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 18. doi: 10.1007/s12613-020-2075-3
|
[21] |
S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, and X.Y. Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 291. doi: 10.1007/s12613-019-1737-5
|
[22] |
Q. Wang, R. Lu, Z.Y. Chen, G.Q. Li, and Y.X. Yang, CFD and experimental investigation of desulfurization of rejected electrolytic manganese metal in electroslag remelting process, Metall. Mater. Trans. B, 51(2020), No. 2, p. 649. doi: 10.1007/s11663-019-01766-y
|
[23] |
Q. Wang, Y. Liu, G.Q. Li, Y.M. Gao, Z. He, and B.K. Li, Predicting transfer behavior of oxygen and sulfur in electroslag remelting process, Appl. Therm. Eng., 129(2018), p. 378. doi: 10.1016/j.applthermaleng.2017.10.062
|
[24] |
X.F. Shi, L.Z. Chang, and J.J. Wang, Effect of ultrasonic power introduced by a mold copper plate on the solidification process, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 139. doi: 10.1007/s12613-017-1388-3
|
[25] |
L. Rao, S.J. Wang, J.H. Zhao, M.P. Geng, and G. Ding, Experimental and simulation studies on fabricating GCr15/40Cr bimetallic compound rollers using electroslag surfacing with liquid metal method, J. Iron Steel Res. Int., 21(2014), No. 9, p. 869. doi: 10.1016/S1006-706X(14)60155-2
|
[26] |
D.B. Jiang and M.Y. Zhu, Flow and solidification in billet continuous casting machine with dual electromagnetic stirrings of mold and the final solidification, Steel Res. Int., 86(2015), No. 9, p. 993. doi: 10.1002/srin.201400281
|
[27] |
H. Wang, Y.B. Zhong, L.C. Dong, Z. Shen, Q. Li, W.Q. Li, T.X. Zheng, W.L. Ren, Z.S. Lei, and Z.M. Ren, Coupled 3D numerical model of droplet evolution behaviors during the magnetically controlled electroslag remelting process, JOM, 70(2018), No. 12, p. 2917. doi: 10.1007/s11837-018-3029-3
|
[28] |
K.I. Miyazawa, T. Fukaya, S. Asai, I. Muchi, M. Choudhary, and J. Szekely, The effect of an externally imposed magnetic field on the behavior of a laboratory scale ESR system, ISIJ Int., 25(1985), No. 5, p. 386. doi: 10.2355/isijinternational1966.25.386
|
[29] |
A. Mitchell and B. Hernandez-Morales, Electromagnetic stirring with alternating current during electroslag remelting, Metall. Trans. B, 21(1990), No. 4, p. 723. doi: 10.1007/BF02654251
|
[30] |
B.K. Li, F. Wang, and F. Tsukihashi, Current, magnetic field and joule heating in electroslag remelting processes, ISIJ Int., 52(2012), No. 7, p. 1289. doi: 10.2355/isijinternational.52.1289
|
[31] |
X.H. Wang and Y. Li, A comprehensive 3D mathematical model of the electroslag remelting process, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1837. doi: 10.1007/s11663-015-0342-x
|
[32] |
ANSYS, Inc 15.0, August 2013. Canonsburg, USA.
|
[33] |
Y.W. Dong, Mathematical Modeling of Solidification During Electroslag Remelting Process and Development of New Slags [Dissertation], Northeastern University, Shenyang, 2008, p. 42.
|
[34] |
Y.W. Dong, Z.H. Jiang, J.X. Fan, Y.L. Cao, D. Hou, and H.B. Cao, Comprehensive mathematical model for simulating electroslag remelting, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1475. doi: 10.1007/s11663-015-0546-0
|
[35] |
O. Kazumi, Electro-Slag remelting slag, B. Jpn. Inst. Met., 18(1979), No. 10, p. 684. doi: 10.2320/materia1962.18.684
|