留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  826
  • HTML全文浏览量:  305
  • PDF下载量:  45
  • 被引次数: 0
Ruijing Xu, Wenjie Zou, Bo Rao, Wei Zhao, Ting Wang, and Zhijun Zhang, In situ kinetics and flocs conformation studies of kaolinite flocculated by Chi-g-CPAM, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 813-823. https://doi.org/10.1007/s12613-022-2522-4
Cite this article as:
Ruijing Xu, Wenjie Zou, Bo Rao, Wei Zhao, Ting Wang, and Zhijun Zhang, In situ kinetics and flocs conformation studies of kaolinite flocculated by Chi-g-CPAM, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 813-823. https://doi.org/10.1007/s12613-022-2522-4
引用本文 PDF XML SpringerLink
研究论文

Chi-g-CPAM絮凝高岭石的原位动力学和絮体形态研究

  • 通讯作者:

    邹文杰    E-mail: wjzou@ustb.edu.cn

文章亮点

  • (1) 开发了絮凝性能优异的Chi-g-CPAM絮凝剂并研究了其絮凝高岭石的机理。
  • (2) 对比了Chi-g-CPAM和CPAM絮凝高岭石时的原位吸附行为。
  • (3) 分析了Chi-g-CPAM和CPAM对高岭石的絮凝动力学和絮体构象变化规律。
  • 本研究开发了一种高效絮凝剂——壳聚糖接枝阳离子型聚丙烯酰胺(Chi-g-CPAM),并比较了其与商用阳离子聚丙烯酰胺(CPAM)对高岭石悬浊液的絮凝行为,分析了絮凝过程动力学以及相应的絮凝层形态变化规律。本文采用原子转移自由基聚合法(ATRP)在硅片上修饰了Chi-g-CPAM和CPAM,采用耗散型石英晶体微量天平进行了原位絮凝行为研究。结果表明Chi-g-CPAM絮凝高岭石的平衡时间仅是CPAM的0.46倍,且高岭石层的总质量更大。Chi-g-CPAM对高岭石的絮凝行为可较好的用动力学拟一阶模型模拟;CPAM絮凝高岭石的过程无法用单一模型来拟合,其初始阶段符合Elovich这一经验方程,反映了絮凝过程中活化能变化较大,这与CPAM的长链分子的架桥、卷扫作用有关。絮体形态研究表明,Chi-g-CPAM和高岭石形成的絮凝层较为致密(K1 = 0.3513)且不随时间改变,CPAM初始阶段絮凝层构象松散(K1 = 0.4663),在800 min后观察到絮凝层构象逐渐塌陷(K2 = 0.2026)。采用两种絮凝剂进行沉降实验,在用量为75 g/t时,Chi-g-CPAM处理的高岭石悬浊液上清液浊度和CPAM处理的相同,但沉降层厚度小于CPAM,说明Chi-g-CPAM和高岭石的絮凝絮团更致密,这和构象研究分析表现出一致性。该研究有助于更好地了解絮凝剂的絮凝行为,有助于开发用于选矿和尾矿处理的高效絮凝剂。
  • Research Article

    In situ kinetics and flocs conformation studies of kaolinite flocculated by Chi-g-CPAM

    + Author Affiliations
    • This study presents a comparative study of the flocculation behavior of kaolinite induced by chitosan-graft-poly(acrylamide-dimethyl diallyl ammonium chloride) (Chi-g-CPAM) and a commercial cationic polyacrylamide (CPAM). The flocculation behaviour was characterised in terms of both flocculation kinetics and the corresponding morphology changes during flocculation. Both Chi-g-CPAM and CPAM were grafted from silica wafers by means of atom transfer radical polymerization (ATRP). The quartz crystal microbalance with dissipation (QCM-D) tests were conducted. The equilibrium time flocculated by Chi-g-CPAM was found to be 0.46 times as that of CPAM, together with a larger total mass of kaolinite layer. The flocculation behaviour by Chi-g-CPAM can be well captured by a pseudo-first-order model. In contrast, the presence of CPAM leads to a more complex kinetics. A relatively larger fitting slope (0.4663) was obtained at the initial stage but the fitting slope droped to 0.2026 after 800 min, indicating a densification process caused by CPAM. The flocculation kinetics of CPAM can be captured by the Elovich model for the inital stage but the combination of pseudo-first-order and pseudo-second-order models for the latter stages, which can be attributed to the long chain of CPAM. With a dosage of 75 g/t, the settling test with Chi-g-CPAM exhibits the same turbidity in the supernatant but a smaller layer thickness of the settlement compared to CPAM. The study enables a better understanding of the flocculation behavior and contributes to the development of efficient flocculants in mineral processing and tailings treatment.
    • loading
    • [1]
      T.G. Ambaye, M. Vaccari, S. Prasad, E.D. van Hullebusch, and S. Rtimi, Preparation and applications of chitosan and cellulose composite materials, J. Environ. Manage., 301(2022), art. No. 113850. doi: 10.1016/j.jenvman.2021.113850
      [2]
      F.A. Bertoni, J.C. González, S.I. García, L.F. Sala, and S.E. Bellú, Application of chitosan in removal of molybdate ions from contaminated water and groundwater, Carbohydr. Polym., 180(2018), p. 55. doi: 10.1016/j.carbpol.2017.10.027
      [3]
      H. Salehizadeh, N. Yan, and R. Farnood, Recent advances in polysaccharide bio-based flocculants, Biotechnol. Adv., 36(2018), No. 1, p. 92. doi: 10.1016/j.biotechadv.2017.10.002
      [4]
      C.L. Vieira, F.O.S. Neto, V.H. Carvalho-Silva, and R. Signini, Design of apolar chitosan-type adsorbent for removal of Cu(II) and Pb(II): An experimental and DFT viewpoint of the complexation process, J. Environ. Chem. Eng., 7(2019), No. 3, art. No. 103070. doi: 10.1016/j.jece.2019.103070
      [5]
      Y.J. Sun, S.B. Zhou, S.Y. Pan, S.C. Zhu, Y. Yu, and H.L. Zheng, Performance evaluation and optimization of flocculation process for removing heavy metal, Chem. Eng. J., 385(2020), art. No. 123911. doi: 10.1016/j.cej.2019.123911
      [6]
      X.M. Tang, T. Huang, S.X. Zhang, W. Wang, and H.L. Zheng, The role of sulfonated chitosan-based flocculant in the treatment of hematite wastewater containing heavy metals, Colloids Surf. A, 585(2020), art. No. 124070. doi: 10.1016/j.colsurfa.2019.124070
      [7]
      S. Subramaniam, K.Y. Foo, E.N.M. Yusof, A.H. Jawad, L.D. Wilson, and S. Sabar, Hydrothermal synthesis of phosphorylated chitosan and its adsorption performance towards Acid Red 88 dye, Int. J. Biol. Macromol., 193(2021), p. 1716. doi: 10.1016/j.ijbiomac.2021.11.009
      [8]
      J.P. Wang, Y.Z. Chen, S.J. Zhang, and H.Q. Yu, A chitosan-based flocculant prepared with gamma-irradiation-induced grafting, Bioresour. Technol., 99(2008), No. 9, p. 3397. doi: 10.1016/j.biortech.2007.08.014
      [9]
      X. Lu, Y.H. Xu, W.Q. Sun, Y.J. Sun, and H.L. Zheng, UV-initiated synthesis of a novel chitosan-based flocculant with high flocculation efficiency for algal removal, Sci. Total Environ., 609(2017), p. 410. doi: 10.1016/j.scitotenv.2017.07.192
      [10]
      T. Zeng, X.Q. Hu, H. Wu, J.W. Yang, and H.B. Zhang, Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan, Int. J. Biol. Macromol., 131(2019), p. 760. doi: 10.1016/j.ijbiomac.2019.03.116
      [11]
      D.F. Wang, T.Q. Zhao, L.Q. Yan, Z.M. Mi, Q. Gu, and Y.M. Zhang, Synthesis, characterization and evaluation of dewatering properties of chitosan-grafting DMDAAC flocculants, Int. J. Biol. Macromol., 92(2016), p. 761. doi: 10.1016/j.ijbiomac.2016.07.087
      [12]
      K. Yang, G. Wang, X.M. Chen, X. Wang, and F.L. Liu, Treatment of wastewater containing Cu2+ using a novel macromolecular heavy metal chelating flocculant xanthated chitosan, Colloids Surf. A, 558(2018), p. 384. doi: 10.1016/j.colsurfa.2018.06.082
      [13]
      N.S.M. Hatta, S.W. Lau, M. Takeo, et al., Novel cationic chitosan-like bioflocculant from Citrobacter youngae GTC 01314 for the treatment of kaolin suspension and activated sludge, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105297. doi: 10.1016/j.jece.2021.105297
      [14]
      N. Molaei, S.C. Chelgani, and E.R. Bobicki, A comparison study between bioflocculants and PAM for dewatering of ultrafine phyllosilicate clay minerals, Appl. Clay Sci., 218(2022), art. No. 106409. doi: 10.1016/j.clay.2022.106409
      [15]
      Y.J. Sun, D. Li, X. Lu, J.W. Sheng, X. Zheng, and X.F. Xiao, Flocculation of combined contaminants of dye and heavy metal by nano-chitosan flocculants, J. Environ. Manage., 299(2021), art. No. 113589. doi: 10.1016/j.jenvman.2021.113589
      [16]
      H.C. Zhu, Y. Zhang, X.G. Yang, et al., One-step green synthesis of non-hazardous dicarboxyl cellulose flocculant and its flocculation activity evaluation, J. Hazard. Mater., 296(2015), p. 1. doi: 10.1016/j.jhazmat.2015.04.029
      [17]
      D. Zheng, W.D. Song, Y.Y. Tan, S. Cao, Z.L. Yang, and L.J. Sun, Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1429. doi: 10.1007/s12613-020-2181-2
      [18]
      S. Lv, W.J. Peng, Y.J. Cao, et al., Synthesis and characterisation of a novel pH-sensitive flocculant and its flocculation performance, J. Mol. Liq., 348(2022), art. No. 118480. doi: 10.1016/j.molliq.2022.118480
      [19]
      Y. Xu, K.M. Gan, S.Y. Liang, H.T. Liu, and Q.H. Wang, Investigation and optimization of chitosan performance in flocculating Kaolin suspensions using a real-time suspending solid concentration measuring method, Water, 13(2021), No. 4, art. No. 513. doi: 10.3390/w13040513
      [20]
      J. Zeng, D.Q. Zhang, W.F. Liu, et al., Preparation of carboxymethylated lignin-based multifunctional flocculant and its application for copper-containing wastewater, Eur. Polym. J., 164(2022), art. No. 110967. doi: 10.1016/j.eurpolymj.2021.110967
      [21]
      D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
      [22]
      M.X. Wang, L. Feng, X.Y. You, and H.L. Zheng, Effect of fine structure of chitosan-based flocculants on the flocculation of bentonite and humic acid: Evaluation and modeling, Chemosphere, 264(2021), art. No. 128525. doi: 10.1016/j.chemosphere.2020.128525
      [23]
      S.S. Wang, L. Zhang, B. Yan, H.L. Xu, Q.X. Liu, and H.B. Zeng, Molecular and surface interactions between polymer flocculant chitosan-g-polyacrylamide and kaolinite particles: Impact of salinity, J. Phys. Chem. C, 119(2015), No. 13, p. 7327. doi: 10.1021/acs.jpcc.5b00739
      [24]
      R.J. Xu, W.J. Zou, T. Wang, J. Huang, Z.J. Zhang, and C.Y. Xu, Adsorption and interaction mechanisms of Chi-g-P(AM-DMDAAC) assisted settling of kaolinite in a two-step flocculation process, Sci. Total Environ., 816(2022), art. No. 151576. doi: 10.1016/j.scitotenv.2021.151576
      [25]
      S.C. Medina, A.S.F. Farinha, A.H. Emwas, A. Tabatabai, and T. Leiknes, A fundamental study of adsorption kinetics of surfactants onto metal oxides using quartz crystal microbalance with dissipation (QCM-D), Colloids Surf. A, 586(2020), art. No. 124237. doi: 10.1016/j.colsurfa.2019.124237
      [26]
      J. Kou and S.H. Xu, In situ kinetics and conformation studies of dodecylamine adsorption onto zinc sulfide using a quartz crystal microbalance with dissipation (QCM-D), Colloids Surf. A, 490(2016), p. 110. doi: 10.1016/j.colsurfa.2015.11.042
      [27]
      F.C. Teng, Q.X. Liu, and H.B. Zeng, In situ kinetic study of zinc sulfide activation using a quartz crystal microbalance with dissipation (QCM-D), J. Colloid Interface Sci., 368(2012), No. 1, p. 512. doi: 10.1016/j.jcis.2011.10.048
      [28]
      M. Borsari, N. Braidi, M. Buffagni, et al., Copper-catalyzed ARGET ATRP of styrene from ethyl α-haloisobutyrate in EtOAc/EtOH, using ascorbic acid/Na2CO3 as reducing system, Eur. Polym. J., 157(2021), art. No. 110675. doi: 10.1016/j.eurpolymj.2021.110675
      [29]
      A. Taniguchi, S. Tamura, and T. Ikegami, The relationship between polymer structures on silica particles and the separation characteristics of the corresponding columns for hydrophilic interaction chromatography, J. Chromatogr. A, 1618(2020), art. No. 460837. doi: 10.1016/j.chroma.2019.460837
      [30]
      S. Nazari Pour, S.V. Ghugare, R. Wiens, K. Gough, and S. Liu, Controlled in situ formation of polyacrylamide hydrogel on PET surface via SI-ARGET-ATRP for wound dressings, Appl. Surf. Sci., 349(2015), p. 695. doi: 10.1016/j.apsusc.2015.04.181
      [31]
      M. Mirzaeinejad, Y. Mansoori, and M. Amiri, Amino functionalized ATRP-prepared polyacrylamide-g-magnetite nanoparticles for the effective removal of Cu(II) ions: Kinetics investigations, Mater. Chem. Phys., 205(2018), p. 195. doi: 10.1016/j.matchemphys.2017.11.020
      [32]
      C.H. Shi, W.Q. Sun, Y.J. Sun, L. Chen, Y.H. Xu, and M.D. Tang, Synthesis, characterization, and sludge dewaterability evaluation of the chitosan-based flocculant CCPAD, Polymers, 11(2019), No. 1, art. No. 95. doi: 10.3390/polym11010095
      [33]
      W.J. Zou, L. Gong, J. Huang, et al., Probing the adsorption and interaction mechanisms of hydrophobically modified polyacrylamide P(AM-NaAA-C16DMAAC) on model coal surface: Impact of salinity, Miner. Eng., 141(2019), art. No. 105841. doi: 10.1016/j.mineng.2019.105841
      [34]
      S. Paul, D. Paul, T. Basova, and A.K. Ray, Studies of adsorption and viscoelastic properties of proteins onto liquid crystal phthalocyanine surface using quartz crystal microbalance with dissipation technique, J. Phys. Chem. C, 112(2008), No. 31, p. 11822. doi: 10.1021/jp800975t
      [35]
      S. Wang, X.P. Song, X.J. Wang, Q.S. Chen, J.C. Qin, and Y.X. Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1065. doi: 10.1007/s12613-019-1948-9
      [36]
      M. Özacar and İ.A. Şengil, A kinetic study of metal complex dye sorption onto pine sawdust, Process Biochem., 40(2005), No. 2, p. 565. doi: 10.1016/j.procbio.2004.01.032
      [37]
      C.W. Cheung, J.F. Porter, and G. McKay, Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char, J. Chem. Technol. Biotechnol., 75(2000), No. 11, p. 963. doi: 10.1002/1097-4660(200011)75:11<963::AID-JCTB302>3.0.CO;2-Z
      [38]
      S.H. Chien and W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44(1980), No. 2, p. 265. doi: 10.2136/sssaj1980.03615995004400020013x
      [39]
      I.G. Sedeva, D. Fornasiero, J. Ralston, and D.A. Beattie, The influence of surface hydrophobicity on polyacrylamide adsorption, Langmuir, 25(2009), No. 8, p. 4514. doi: 10.1021/la803838k
      [40]
      H. Teng and C.T. Hsieh, Activation energy for oxygen chemisorption on carbon at low temperatures, Ind. Eng. Chem. Res., 38(1999), No. 1, p. 292. doi: 10.1021/ie980107j
      [41]
      Z. Yang, H. Yang, Z.W. Jiang, et al., Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide, J. Hazard. Mater., 254-255(2013), p. 36. doi: 10.1016/j.jhazmat.2013.03.053
      [42]
      L. Feng, X.H. Li, W.C. Lu, et al., Preparation of a graft modified flocculant based on chitosan by ultrasonic initiation and its synergistic effect with kaolin for the improvement of acid blue 83 (AB 83) removal, Int. J. Biol. Macromol., 150(2020), p. 617. doi: 10.1016/j.ijbiomac.2020.02.076
      [43]
      L. Feng, H.L. Zheng, X.M. Tang, et al., The investigation of the specific behavior of a cationic block structure and its excellent flocculation performance in high-turbidity water treatment, RSC Adv., 8(2018), No. 27, p. 15119. doi: 10.1039/C8RA02006J
      [44]
      B.Z. Liu, H.L. Zheng, Y.L. Wang, et al., A novel carboxyl-rich chitosan-based polymer and its application for clay flocculation and cationic dye removal, Sci. Total Environ., 640-641(2018), p. 107. doi: 10.1016/j.scitotenv.2018.05.309

    Catalog


    • /

      返回文章
      返回