留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2018年  第25卷  第1期

显示方式:
研究论文
Flotation mechanisms of molybdenite fines by neutral oils
Qing-quan Lin, Guo-hua Gu, Hui Wang, You-cai Liu, Jian-gang Fu, Chong-qing Wang
2018, 25(1): 1-10. doi: 10.1007/s12613-018-1540-8
摘要:
The flotation mechanisms of molybdenite fines by neutral oils were investigated through microflotation test,turbidity measurements,infrared spectroscopy,and interfacial interaction calculations.The results of the flotation test show that at pH 2-11,the floatability of molybdenite fines in the presence of transformer oil is markedly better than that in the presence of kerosene and diesel oil.The addition of transformer oil,which enhances the floatability of molybdenite fines,promotes the aggregation of molybdenite particles.Fourier transform infrared measurements illustrate that physical interaction dominates the adsorption mechanism of neutral oil on molybdenite.Interfacial interaction calculations indicate that hydrophobic attraction is the crucial force that acts among the oil collector,water,and molybdenite.Strong hydrophobic attraction between the oily collector and water provides the strong dispersion capability of the collector in water.Furthermore, the dispersion capability of the collector,not the interaction strength between the oily collectors and molybdenite,has a highly significant role in the flotation system of molybdenite fines.Our findings provide insights into the mechanism of molybdenite flotation.
研究论文
Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite
Nathália Vieceli, Carlos A. Nogueira, Manuel F. C. Pereira, Fernando O. Durão, Carlos Guimarães, Fernanda Margarido
2018, 25(1): 11-19. doi: 10.1007/s12613-018-1541-7
摘要:
The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.
研究论文
Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores
Long Meng, Zhan-cheng Guo, Jing-kui Qu, Tao Qi, Qiang Guo, Gui-hua Hou, Peng-yu Dong, Xin-guo Xi
2018, 25(1): 20-27. doi: 10.1007/s12613-018-1542-6
摘要:
A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.
研究论文
Carbothermic reduction behaviors of Ti-Nb-bearing Fe concentrate from Bayan Obo ore in China
Guang Wang, Ya-xing Du, Jing-song Wang, Qing-guo Xue
2018, 25(1): 28-36. doi: 10.1007/s12613-018-1543-5
摘要:
To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti-Nb-bearing Fe concentrate/coal composite pellet was reduced at temperatures greater than 1100℃. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100℃ were analyzed by X-ray diffraction and scanning electron microscopy-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100℃ for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.
研究论文
Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study
Xing Zhao, Hong-liang Zhao, Li-feng Zhang, Li-qiang Yang
2018, 25(1): 37-44. doi: 10.1007/s12613-018-1544-4
摘要:
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio (η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.
研究论文
Effects of microrolling parameters on the microstructure and deformation behavior of pure copper
Yi Jing, Hong-mei Zhang, Hao Wu, Lian-jie Li, Hong-bin Jia, Zheng-yi Jiang
2018, 25(1): 45-52. doi: 10.1007/s12613-018-1545-3
摘要:
Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking, and microstructure were studied. The experimental results showed that the side deformation became more non-uniform, resulting in substantial edge bulge, and the uneven spread increased with increasing grain size and reduction level. When the reduction level reached 80% and the grain size was 65 μm, slight edge cracks occurred. When the grain size was 200 μm, the edge cracks became wider and deeper. No edge cracks occurred when the grain size was 200 μm and the reduction level was less than 60%; edge cracks occurred when the reduction level was increased to 80%. As the reduction level increased, the grains were gradually elongated and appeared as a sheet-like structure along the rolling direction; a fine lamellar structure was obtained when the grain size was 20 μm and the reduction level was less than 60%.
研究论文
Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219
Shijo Thomas, Umasankar V.
2018, 25(1): 53-61. doi: 10.1007/s12613-018-1546-2
摘要:
Aluminum alloy matrix composites have found a predominant place in research, and their applications are explored in almost all industries. The aerospace industry has been using precipitation-hardenable alloys in structural applications. However, insufficient literature is available on the influence of multiwalled carbon nanotubes (MWCNTs) on precipitation-hardenable alloy composite materials; thus, this work was designed to elucidate the effect on MWCNT reinforcement on AA2219 with and without precipitation hardening. Reinforcement with MWCNTs has been reported to accelerate precipitation and to achieve greater hardness within a much shorter time. The addition of 0.75wt% MWCNTs resulted in maximal hardness at 90 min, which is approximately 27% of improvement over the maximum hardness achieved by the corresponding monolithic alloy after 10 h of aging. The sample reinforced with 0.75wt% MWCNTs showed an improvement of 82% in hardness by solutionizing and aging compared to that achieved by sintering.
研究论文
Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys
Li-zi He, Yi-heng Cao, Yi-zhou Zhou, Jian-zhong Cui
2018, 25(1): 62-72. doi: 10.1007/s12613-018-1547-1
摘要:
Effects of Ag addition on the microstructures, aging characteristics, tensile properties, electrochemical properties, and intergranular corrosion (IGC) properties of Al-1.1Mg-0.8Si-0.9Cu-0.35Mn-0.02Ti alloy were investigated using scanning electronic microscopy and transmission electronic microscopy. The aging process of Al-Mg-Si-Cu alloys was accelerated by the addition of Ag. The strength of peak-aged Al-Mg-Si-Cu alloys was enhanced by Ag addition because of the high density of β"- and L-phase age-hardening precipitates. The corrosion performance of the Al-Mg-Si-Cu alloy is closely related to the aging conditions and is independent of the Ag content. The IGC susceptibility is serious in the peak-aged alloy because of the continuous distribution of Cu-rich Q-phase precipitates along grain boundaries. Ag addition reduces the size of the grain-boundary-precipitate Q phase and the width of the precipitate-free zone and thus results in decreased IGC susceptibility of Al-Mg-Si-Cu alloys.
研究论文
Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation
Ru-qin Gao, Qian Sun, Zhi Fang, Guo-ting Li, Meng-zhe Jia, Xin-mei Hou
2018, 25(1): 73-79. doi: 10.1007/s12613-018-1548-0
摘要:

Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650℃ was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ=0.576 mg·m-3·min-1 and K=0.048 m3.

研究论文
Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis
S. Arunkumar, P. Kumaravel, C. Velmurugan, V. Senthilkumar
2018, 25(1): 80-87. doi: 10.1007/s12613-018-1549-z
摘要:
The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to~93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.
研究论文
Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries
Yu Han, Shuang-yu Liu, Lei Cui, Li Xu, Jian Xie, Xue-Ke Xia, Wen-Kui Hao, Bo Wang, Hui Li, Jie Gao
2018, 25(1): 88-93. doi: 10.1007/s12613-018-1550-6
摘要:
A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni3S2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and~50 nm, respectively. The free space in the flowers and the thin feature of Ni3S2 buffered the volume changes and relieved mechanical strain during repeated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni3S2 electrode during cycling. The G/Ni-supported Ni3S2 maintained a reversible capacity of 250 mAh·g-1 after 100 cycles at 50 mA·g-1, demonstrating the good cycling stability as a result of the unique microstructure of this electrode material.
研究论文
Properties and corrosion behavior of Al based nanocomposite foams produced by the sintering-dissolution process
Mostafa Amirjan, Mansour Bozorg
2018, 25(1): 94-101. doi: 10.1007/s12613-018-1551-5
摘要:
The properties of Al based nanocomposite metal foams and their corrosion behaviors were investigated in this study. For this, the composite metal foams with different relative densities (porosity) reinforced with alumina nanoparticles were prepared using a powder metallurgy-based sintering-dissolution process (SDP) and NaCl particles were used as space holders. Then, the effect of nanoparticle reinforcement and different amounts of NaCl space holders (corresponding porosity) on the microstructure, morphology, density, hardness, and electrochemical specifications of the samples were investigated. It was found that as the relative density increased from 60% to 70%, the wall thickness increased from about 200 to 300 μm, which led to a decrease in pore size. Also, the addition of nanoparticle reinforcement and the increased relative density result in increasing metal foam hardness. Moreover, electrochemical test results indicated that increasing the Al2O3 content reduced the corrosion rate, but increasing the porosity enhanced it.
研究论文
Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy
Xiang Zeng, Jie Teng, Jin-gang Yu, Ao-shuang Tan, Ding-fa Fu, Hui Zhang
2018, 25(1): 102-109. doi: 10.1007/s12613-018-1552-4
摘要:
Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.
研究论文
Influence of Ag content on the microstructure, mechanical, and tribological properties of TaVN-Ag films
Tong Chen, Li-hua Yu, Jun-hua Xu
2018, 25(1): 110-115. doi: 10.1007/s12613-018-1553-3
摘要:
A series of TaVN-Ag nanocomposite films were deposited using a radio-frequency magnetron sputtering system. The microstructure, mechanical properties, and tribological performance of the films were investigated. The results showed that TaVN-Ag films were composed of face-centered cubic (fcc) TaVN and fcc-Ag. With increasing Ag content, the hardness of TaVN-Ag composite films first increased and then decreased rapidly. The maximum hardness value was 31.4 GPa. At room temperature, the coefficient of friction (COF) of TaVN-Ag films decreased from 0.76 to 0.60 with increasing Ag content from 0 to 7.93at%. For the TaVN-Ag films with 7.93at% Ag, COF first increased and then decreased rapidly from 0.60 at 25℃ to 0.35 at 600℃, whereas the wear rate of the film increased continuously from 3.91×10-7 to 19.1×10-7 mm3/(N·mm). The COF of the TaVN-Ag film with 7.93at% Ag was lower than that of the TaVN film, and their wear rates showed opposite trends with increasing temperature.