Soheil Amani, and Ghader Faraji, Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp.672-681. https://dx.doi.org/10.1007/s12613-018-1614-7
Cite this article as: Soheil Amani, and Ghader Faraji, Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 25(2018), No. 6, pp.672-681. https://dx.doi.org/10.1007/s12613-018-1614-7
Research Article

Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion

Author Affilications
  • In this study, cyclic expansion extrusion (CEE), as a relatively new severe plastic deformation (SPD) process, is applied to a rare earth (RE) containing Mg alloy WE43. The effects of the processing temperature and the number of passes are also investigated. The results showed that dynamic recrystallization (DRX) occurred after CEE processing at 400℃, and a bimodal structure with ultrafine DRXed grains surrounded the unrecrystallized grains. However, the DRX at 330℃ was retarded because of the existence of RE elements. The tensile tests showed that a simultaneous increase in the strength and the ductility of WE43 is obtained after CEE processing at 400℃ via two passes. Furthermore, the highest ultimate tensile strength of 440 MPa was achieved after the second pass of CEE at 330℃, and the highest ductility of 21% was attained after the second pass of CEE at 400℃. The microhardness measurements showed that the hardness increased from HV 80 to HV 114 and HV 98 after two passes of CEE processing at 330 and 400℃, respectively. In conclusion, increasing the processing passes could increase the mechanical properties and the volume fraction of the recrystallized grains. Moreover, increasing the temperature reduced the strength and the microhardness even if the elongation increased.
  • M. Ma, K. Zhang, X.G. Li, Y.J. Li, G.L. Shi, and J.W. Yuan, Influence of solution and aging on the microstructures and mechanical properties of complex deformed WE93 alloy, Mater. Des., 51(2013), p. 73.
    W.Z. Chen, X. Wang, L.X. Hu, and E. Wang, Fabrication of ZK60 magnesium alloy thin sheets with improved ductility by cold rolling and annealing treatment, Mater. Des., 40(2012), p. 319.
    M. Mabuchi, T. Asahina, H. Iwasaki, and K. Higashi, Experimental investigation of superplastic behaviour in magnesium alloys, Mater. Sci. Technol., 13(1997), No. 10, p. 825.
    W. Püschl, Models for dislocation cross-slip in close-packed crystal structures: a critical review, Prog. Mater. Sci., 47(2002), No. 4, p. 415.
    B. Smola, L. Joska, V. Březina, I. Stulíková, and F. Hnilica, Microstructure, corrosion resistance and cytocompatibility of Mg–5Y–4rare earth–0.5 Zr (WE54) alloy, Mater. Sci. Eng. C, 32(2012), No. 4, p. 659.
    H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. WaizyEmail, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12(2013), No. 1, p. 62.
    B. O’Brien and W. Carroll, The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review, Acta Biomater., 5(2009), No. 4, p. 945.
    V. Neubert, I. Stulíková, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, and J. Pelcová, Thermal stability and corrosion behaviour of Mg–Y–Nd and Mg–Tb–Nd alloys, Mater. Sci. Eng. A, 462(2007), No. 1-2, p. 329.
    C. Xu, K.N. Xia, and T.G. Langdon, Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 205.
    A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci., 53(2008), No. 6, p. 893.
    G. Faraji, M. Mashhadi, and H.S. Kim, Microstructure inhomogeneity in ultra-fine grained bulk AZ91 produced by accumulative back extrusion (ABE), Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4312.
    G. Faraji, M.M. Mashhadi, and H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett., 65(2011), No. 19-20, p. 3009.
    J. Richert and M. Richert, A new method for unlimited deformation of metals and alloys, Aluminium, 62(1986), No. 8, p. 604.
    N. Pardis, B. Talebanpour, R. Ebrahimi, and S. Zomorodian, Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression (CEC), Mater. Sci. Eng. A, 528(2011), No. 25-26, p.7537.
    M. Ensafi, G. Faraji, and H. Abdolvand, Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals, Mater. Lett., 197(2017), p. 12.
    G. Faraji, M.M. Mashhadi, K. Abrinia, and H.S. Kim, Deformation behavior in the tubular channel angular pressing (TCAP) as a noble SPD method for cylindrical tubes, Appl. Phys. A, 107(2012), No. 4, p. 819.
    G. Faraji, P. Yavari, S. Aghdamifar, and M.M. Mashhadi, Mechanical and microstructural properties of ultra-fine grained AZ91 magnesium alloy tubes processed via multi pass tubular channel angular pressing (TCAP), J. Mater. Sci. Technol., 30(2014), No. 2, p. 134.
    X. Zhang, G.Y. Yuan, and Z.Z. Wang, Mechanical properties and biocorrosion resistance of Mg–Nd–Zn–Zr alloy improved by cyclic extrusion and compression, Mater. Lett., 74(2012), p. 128.
    N. Pardis, C. Chen, M. Shahbaz, R. Ebrahimi, and L.S. Toth, Development of new routes of severe plastic deformation through cyclic expansion-extrusion process, Mater. Sci. Eng. A, 613(2014), p. 357.
    H. Sheikh and R. Ebrahimi, Investigation on texture evolution during cyclic expansion-extrusion (CEE) technique using crystal plasticity finite element modeling, J. Mater. Sci., 51(2016), No. 22, p. 10178.
    N. Pardis, C. Chen, R. Ebrahimi, L.S. Toth, C.F. Gu, B. Beausir, and L. Kommel, Microstructure, texture and mechanical properties of cyclic expansion-extrusion deformed pure copper, Mater. Sci. Eng. A, 628(2015), p. 423.
    S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia, and H. Ghanbari, A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application, J. Alloys Compd., 723(2017), p. 467.
    Q.D. Wang, Y.J. Chen, M.P. Liu, J.B. Lin, and H.J. Roven, Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression, Mater. Sci. Eng. A, 527(2010), No. 9, p. 2265.
    S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, and Y. Kojima, Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 52.
    F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot workability analysis of extruded AZ magnesium alloys with processing maps, Mater. Sci. Eng. A, 527(2010), No. 3, p. 735.
    S.A. Farzadfar, É. Martin, M. Sanjari, E. Essadiqi, and S. Yue, Texture weakening and static recrystallization in rolled Mg–2.9 Y and Mg–2.9 Zn solid solution alloys, J. Mater. Sci., 47(2012), No. 14, p. 5488.
    I.H. Jung, M. Sanjari, J. Kim, and S. Yue, Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg–RE alloys, Scripta Mater., 102(2015), p. 1.
    D. Griffiths, Explaining texture weakening and improved formability in magnesium rare earth alloys, Mater. Sci. Technol., 31(2015), No. 1, p. 10.
    N. Stanford, The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 2—recrystallisation and texture development, Mater. Sci. Eng. A, 565(2013), p. 469.
    W. Wlake, E. Hadasik, J. Przondziono, D. Kuc, I. Bednarczyk, and G. Niewiński, Plasticity and corrosion resistance of magnesium alloy WE43, Arch. Mater. Sci. Eng., 51(2011), No. 1, p. 16.
    H. Beladi and M. Barnett, Influence of aging pre-treatment on the compressive deformation of WE54 alloy, Mater. Sci. Eng. A, 452-453(2007), p. 306.
    S.A. Farzadfar, M. Sanjari, I.H. Jung, E. Essadiqi, and S. Yue, Role of yttrium in the microstructure and texture evolution of Mg, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6742.
    S.A. Farzadfar, É. Martin, M. Sanjari, E. Essadiqi, M.A. Wells, and S. Yue, On the deformation, recrystallization and texture of hot-rolled Mg–2.9Y and Mg–2.9Zn solid solution alloys-A comparative study, Mater. Sci. Eng. A, 534(2012), Suppl. C, p. 209.
    W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, and H. Zhou, Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting, Mater. Sci. Eng. A, 540(2012), p. 115.
    S.K. Panigrahi, W. Yuan, R.S. Mishra, R. DeLorme, B. Davis, R.A. Howell, and K. Cho, A study on the combined effect of forging and aging in Mg–Y–RE alloy, Mater. Sci. Eng. A, 530(2011), p. 28.
    J. She, F.S. Pan, W. Guo, A.T. Tang, Z.Y. Gao, S.Q. Luo, K. Song, Z.W. Yu, and M. Rashad, Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy, Mater. Des., 90(2016), p. 7.
    S. Amani, G. Faraji, and K. Abrinia, Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE), J. Manuf. Processes, 28(2017), Part 1, p. 197.
    F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H.K. Kim, Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing, Mater. Des., 43(2013), p. 31.
    Y. Estrin, L.S. Toth, A. Molinari, and Y. Bréchet, A dislocation-based model for all hardening stages in large strain deformation, Acta Mater., 46(1998), No. 15, p. 5509.
    Q. Chen, D.Y. Shu, C.K. Hu, Z.D. Zhao, and B.G. Yuan, Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure, Mater. Sci. Eng. A, 541(2012), p. 98.
    P. Minárik, R. Král, J. Čížek, and F. Chmelík, Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP, Acta Mater., 107(2016), p. 83.
    H. Huang, Z.B. Tang, Y. Tian, G.Z. Jia, J.L. Niu, H. Zhang, J. Pei, and G.Y. Yuan, Effects of cyclic extrusion and compression parameters on microstructure and mechanical properties of Mg–1.50 Zn–0.25 Gd alloy, Mater. Des., 86(2015), p. 788.
    E. Orawan, The symposium on internal stresses in metals and alloys, Institute of Metals, London, 1948, p. 451.
    M.F. Ashby, The theory of the critical shear stress and work hardening of dispersion-hardened crystals, Philos. Mag.: J. Theor. Exp. Appl. Phys., 14(1966), No. 132, p. 1157.
  • Related Articles

    [1]Chang-qing Huang, Jia-xing Liu, Xiao-dong Jia. Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(9): 1140-1150. DOI: 10.1007/s12613-019-1852-3
    [2]José Luis Cabezas-Villa, José Lemus-Ruiz, Didier Bouvard, Omar Jiménez, Héctor Javier Vergara-Hernández, Luis Olmos. Sintering study of Ti6Al4V powders with different particle sizes and their mechanical properties [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(12): 1389-1401. DOI: 10.1007/s12613-018-1693-5
    [3]Ping-hu Chen, Yi-bo Li, Rui-qing Li, Ri-peng Jiang, Song-sheng Zeng, Xiao-qian Li. Microstructure, mechanical properties, and wear resistance of VCp-reinforced Fe-matrix composites treated by Q&P process [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(9): 1060-1069. DOI: 10.1007/s12613-018-1657-9
    [4]Yi Jing, Hong-mei Zhang, Hao Wu, Lian-jie Li, Hong-bin Jia, Zheng-yi Jiang. Effects of microrolling parameters on the microstructure and deformation behavior of pure copper [J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(1): 45-52. DOI: 10.1007/s12613-018-1545-3
    [5]M. Şahin, E. Çadırlı. Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(10): 999-1008. DOI: 10.1007/s12613-014-1001-y
    [6]P. M. Reshmi, A. G. Kunjomana, K. A. Chandrasekharan. Electrical and mechanical properties of vapour grown gallium monotelluride crystals [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(10): 967-971. DOI: 10.1007/s12613-013-0822-4
    [7]Suyitno, Budi Arifvianto, Teguh Dwi Widodo, Muslim Mahardika, Punto Dewo, Urip Agus Salim. Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(12): 1093-1099. DOI: 10.1007/s12613-012-0676-1
    [8]Dan Wang, Jun Shen, Lin-zhi Wang. Effects of the types of overlap on the mechanical properties of FSSW welded AZ series magnesium alloy joints [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(3): 231-235. DOI: 10.1007/s12613-012-0543-0
    [9]Liang-ming Yan, Jian Shen, Jun-peng Li, Zhou-bing Li, Xiao-dong Yan. Deformation behavior and microstructure of an Al-Zn-Mg-Cu-Zr alloy during hot deformation [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(1): 46-52. DOI: 10.1007/s12613-010-0108-z
    [10]Kuibo Yin, Xiufang Bian, Na Han, Xiujun Yao, Yan Zhao, Jiankun Zhou. Effect of the addition of Al-Ti-C master alloy on the microstructure and microhardness of a cast Al-10Mg alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(2): 149-153. DOI: 10.1016/S1005-8850(06)60033-9
  • Cited by

    Periodical cited type(41)

    1. Yanfei Bai, Luyao Jiang, Fei Guo, et al. Strong Plasticity Enhancement of a Covering Mg‐Based Material: Influence of Organizational Characteristics on the Strength and Plasticity of AZ31/WE43/AZ31 Laminated Metal Composites. Advanced Engineering Materials, 2025, 27(7) DOI:10.1002/adem.202402408
    2. Mohammadamin Bakhtiarian, Matin Vafaei, Amirhossein Mashhuriazar, et al. Impact of build direction on microstructure and high-temperature mechanical properties of SLM-fabricated 316L stainless steel. Welding in the World, 2025. DOI:10.1007/s40194-025-02007-4
    3. Jalumedi Babu, Anjaiah Madarapu, Deepa Kodali, et al. Deep drawing of magnesium alloys: A review. Journal of Magnesium and Alloys, 2025. DOI:10.1016/j.jma.2025.02.015
    4. Yilin Xu, Xutao Zhao, Mingming Yan, et al. Comprehensive study on corrosion and discharge performance of Mg–Ca alloy with high Ca content. Journal of Materials Research and Technology, 2025, 36: 2895. DOI:10.1016/j.jmrt.2025.04.024
    5. Xian-Wen Chen, Hong-Yu Yang, Bai-Xin Dong, et al. The Development of High-strength Flame-retardant Magnesium Alloys. Journal of Materials Research and Technology, 2025. DOI:10.1016/j.jmrt.2025.04.076
    6. M.R. Sabour, E. Taherkhani, A.R. Rezaei, et al. Solid-state recycling of magnesium and its alloys via plastic deformation: An overview of processing and properties. Journal of Materials Research and Technology, 2024, 31: 3117. DOI:10.1016/j.jmrt.2024.07.032
    7. Linghao Wang, Azman Jalar, Maria Abu Bakar, et al. Effect of deformation temperature on the dynamic recrystallization mechanism and dynamic precipitation behavior of Mg-Gd-Nd-Zr alloy. Journal of Alloys and Compounds, 2024, 1004: 175865. DOI:10.1016/j.jallcom.2024.175865
    8. Weidong Qiao, Chao Liu, Zhimin Zhang, et al. Effect of a Large Height-to-Diameter Ratio Upsetting–Extrusion Process on the Microstructure and Mechanical Properties of Mg-Gd-Y-Zn-Zr Alloys. JOM, 2024, 76(4): 1831. DOI:10.1007/s11837-023-06215-5
    9. E. Taherkhani, M.R. Sabour, G. Faraji. Sustainable magnesium recycling: Insights into grain refinement through plastic deformation-assisted solid-state recycling (SSR). Journal of Magnesium and Alloys, 2024, 12(10): 3947. DOI:10.1016/j.jma.2024.10.016
    10. A. S. Arbuz, A. V. Panichkin, F. E. Popov, et al. Using the radial shear rolling method for deep development of the cast structure of ingots of special materials. Metallurgist, 2024, 67(11-12): 1826. DOI:10.1007/s11015-024-01680-y
    11. Abdulrahman I. Alateyah. Effect of ECAP die angle and route type on the experimental evolution, crystallographic texture, and mechanical properties of pure magnesium. Open Engineering, 2023, 13(1) DOI:10.1515/eng-2022-0406
    12. Waleed H. El-Garaihy, Amal BaQais, Abdulrahman I. Alateyah, et al. The Impact of ECAP Parameters on the Structural and Mechanical Behavior of Pure Mg: A Combination of Experimental and Machine Learning Approaches. Applied Sciences, 2023, 13(10): 6279. DOI:10.3390/app13106279
    13. Wanting Sun, Yang He, Xiaoguang Qiao, et al. Exceptional thermal stability and enhanced hardness in a nanostructured Mg-Gd-Y-Zn-Zr alloy processed by high pressure torsion. Journal of Magnesium and Alloys, 2023, 11(12): 4589. DOI:10.1016/j.jma.2022.04.003
    14. Amirhossein Mashhuriazar, Ali Ebrahimzadeh Pilehrood, Hossein Moghanni, et al. Finite Element Analysis and Optimization of Equal-Channel Angular Rolling Process by Using Taguchi Methodology. Journal of Materials Engineering and Performance, 2023, 32(1): 176. DOI:10.1007/s11665-022-07100-z
    15. Linghao Wang, Azman Jalar, Longhong Dan. Dynamic precipitation and dynamic recrystallization behaviors of Mg-Gd-Nd-Zr magnesium alloy during thermal compression deformation. Journal of Materials Research and Technology, 2023, 26: 7634. DOI:10.1016/j.jmrt.2023.09.111
    16. Kiarash Mashoufi, Peiman Garmroodi, Amin Mirzakhani, et al. Cyclic contraction-expansion extrusion (CCEE): An innovate severe plastic deformation method for tailoring the microstructure and mechanical properties of magnesium AZ91 alloy. Journal of Materials Research and Technology, 2023, 26: 8541. DOI:10.1016/j.jmrt.2023.09.174
    17. Alexandr Arbuz, Anna Kawalek, Alexandr Panichkin, et al. Using the Radial Shear Rolling Method for Fast and Deep Processing Technology of a Steel Ingot Cast Structure. Materials, 2023, 16(24): 7547. DOI:10.3390/ma16247547
    18. Mahmoud Ebrahimi, Qudong Wang, Shokouh Attarilar. A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Progress in Materials Science, 2023, 131: 101016. DOI:10.1016/j.pmatsci.2022.101016
    19. Sourav Mishra, F. Khan, S.K. Panigrahi. A crystal plasticity based approach to establish role of grain size and crystallographic texture in the Tension–Compression yield asymmetry and strain hardening behavior of a Magnesium–Silver–Rare Earth alloy. Journal of Magnesium and Alloys, 2022, 10(9): 2546. DOI:10.1016/j.jma.2021.08.021
    20. Jian-cong Bian, Bao-yi Yu, Jian-fei Hao, et al. Improvement of microstructure, mechanical properties, and corrosion resistance of WE43 alloy by squeeze casting. China Foundry, 2022, 19(5): 419. DOI:10.1007/s41230-022-1181-4
    21. Abdulrahman I. Alateyah, Waleed H. El-Garaihy, Majed O. Alawad, et al. The Effect of ECAP Processing Conditions on Microstructural Evolution and Mechanical Properties of Pure Magnesium—Experimental, Mathematical Empirical and Response Surface Approach. Materials, 2022, 15(15): 5312. DOI:10.3390/ma15155312
    22. M. Kasaeian-Naeini, M. Sedighi, R. Hashemi. Severe plastic deformation (SPD) of biodegradable magnesium alloys and composites: A review of developments and prospects. Journal of Magnesium and Alloys, 2022, 10(4): 938. DOI:10.1016/j.jma.2021.11.006
    23. Chao Liu, Liang Liu, Jie Zheng, et al. Effect of Annealing Before Aging on Microstructure and Mechanical Properties of Mg-Gd-Y-Zn-Zr Alloy. Journal of Materials Engineering and Performance, 2022, 31(12): 9829. DOI:10.1007/s11665-022-07022-w
    24. Iwona Bednarczyk, Dariusz Kuc. The Influence of the Deformation Method on the Microstructure and Properties of Magnesium Alloy Mg-Y-RE-Zr. Materials, 2022, 15(6): 2017. DOI:10.3390/ma15062017
    25. A.I. Alateyah, Mohamed M.Z. Ahmed, Majed O. Alawad, et al. Effect of ECAP die angle on the strain homogeneity, microstructural evolution, crystallographic texture and mechanical properties of pure magnesium: numerical simulation and experimental approach. Journal of Materials Research and Technology, 2022, 17: 1491. DOI:10.1016/j.jmrt.2022.01.088
    26. Heng Zhang, Jie Zheng, Yusha Shi, et al. Microstructure and mechanical properties of pure magnesium prepared by CEE-AEC at different temperatures. Materials Research Express, 2021, 8(6): 066511. DOI:10.1088/2053-1591/ac05fd
    27. Zhi Zhang, Jing-huai Zhang, Jun Wang, et al. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. International Journal of Minerals, Metallurgy and Materials, 2021, 28(1): 30. DOI:10.1007/s12613-020-2190-1
    28. Abdulrahman I. Alateyah, Talal A. Aljohani, Majed O. Alawad, et al. Improving the Corrosion Behavior of Biodegradable AM60 Alloy through Plasma Electrolytic Oxidation. Metals, 2021, 11(6): 953. DOI:10.3390/met11060953
    29. Zhirou Zhang, Qinghuan Huo, Zhenyu Xiao, et al. Optimizing the mechanical properties of a Mg–Y–Nd–Zn–Zr alloy via interrupted compression with an intermediate annealing. Materials Science and Engineering: A, 2021, 812: 141102. DOI:10.1016/j.msea.2021.141102
    30. A.M. Jamili, A. Zarei-Hanzaki, H.R. Abedi, et al. Development of grain size/ texture graded microstructures through friction stir processing and subsequent cold compression of a rare earth bearing magnesium alloy. Materials Science and Engineering: A, 2021, 814: 141190. DOI:10.1016/j.msea.2021.141190
    31. M. Mesbah, A. Fattahi, A. R. Bushroa, et al. Experimental and Modelling Study of Ultra-Fine Grained ZK60 Magnesium Alloy with Simultaneously Improved Strength and Ductility Processed by Parallel Tubular Channel Angular Pressing. Metals and Materials International, 2021, 27(2): 277. DOI:10.1007/s12540-019-00495-w
    32. Hua-bao Yang, Liang Wu, Bin Jiang, et al. Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28(10): 1705. DOI:10.1007/s12613-021-2258-6
    33. Yusha Shi, Jie Zheng, Jinsheng Ji, et al. The improvement of grain refinement, texture modification and mechanical properties of pure Mg prepared by cyclic expansion extrusion with an asymmetric extrusion cavity. Materials Research Express, 2021, 8(4): 046530. DOI:10.1088/2053-1591/abe147
    34. A. Torkian, G. Faraji, M. S. Pedram. Mechanical properties and in vivo biodegradability of Mg–Zr–Y–Nd–La magnesium alloy produced by a combined severe plastic deformation. Rare Metals, 2021, 40(3): 651. DOI:10.1007/s12598-019-01353-9
    35. H. Torabi, G. Faraji, A. Masoumi. Processing characterization of binary Mg-Zn alloys fabricated by a new powder consolidation combined severe plastic deformation method. Journal of Alloys and Compounds, 2020, 832: 154922. DOI:10.1016/j.jallcom.2020.154922
    36. Zhaoming Yan, Zhimin Zhang, Xubin Li, et al. A novel severe plastic deformation method and its effect on microstructure, texture and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. Journal of Alloys and Compounds, 2020, 822: 153698. DOI:10.1016/j.jallcom.2020.153698
    37. V. Babu, Balasivanandha Prabu Shanmugavel, K. A. Padmanabhan. On the Influence of Strain Rate and Number of Passes on Grain Refinement in Al-Mg-Si Alloy Processed by Cyclic Expansion Extrusion. Journal of Materials Engineering and Performance, 2020, 29(12): 8049. DOI:10.1007/s11665-020-05264-0
    38. Ying Liu, Bingheng Lu, Zhixiong Cai. Recent Progress on Mg- and Zn-Based Alloys for Biodegradable Vascular Stent Applications. Journal of Nanomaterials, 2019, 2019: 1. DOI:10.1155/2019/1310792
    39. Wen-bo Luo, Zhi-yong Xue, Wei-min Mao. Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(7): 869. DOI:10.1007/s12613-019-1799-4
    40. Ghader Faraji, Erfan Taherkhani, Mohammad Reza Sabour. Comprehensive Materials Processing. DOI:10.1016/B978-0-323-96020-5.00047-9
    41. Ahmed Mousa Marheb, Akeel Dhahir Subhi. Enhancing the characteristics of ZK60 Mg alloy using cyclic expansion-extrusion (CEE) process. CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS IN ENGINEERING: CMSAE-2021, DOI:10.1063/5.0161006

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (639) PDF downloads (27) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return