Just Accepted

Just Accepted manuscripts are peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication, and author proofing. Just Accepted manuscripts are citable by the Digital Object Identifier (DOI).
Display Method:
Research Article
Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries
Hua-bao Yang, Liang Wu, Bin Jiang, Bin Lei, Ming Yuan, Hong-mei Xie, Andrej Atrens, Jiang-feng Song, Guang-sheng Huang, and  Fu-sheng Pan
, Available online 26 January 2021, https://doi.org/10.1007/s12613-021-2258-6
Abstract:
Mg-Sn-Y alloys with different Sn contents (wt%) were assessed as anode candidates for Mg-air batteries. The relationship between microstructure (including the second phase, grain size, and texture) and discharge properties of the Mg-Sn-Y alloys was examined using microstructure observation, electrochemical measurements, and galvanostatic discharge tests. The Mg-0.7Sn-1.4Y alloy had a high steady discharge voltage of 1.5225 V and a high anodic efficiency of 46.6% at 2.5 mA·cm-2. These good properties were related to its microstructure: small grain size of 3.8 μm, uniform distribution of small second phase particles of 0.6 μm, and a high content (vol%) of (11-20)/(10-10) orientated grains. The Scanning Kelvin Probe Force Microscopy (SKPFM) indicated that the Sn3Y5 and MgSnY phases were effective cathodes causing micro-galvanic corrosion which promoted the dissolution of Mg matrix during the discharge process.
Research Article
Preparation of CaO-containing carbon pellets from coking coal and calcium oxide: Effects of temperature, pore distribution and carbon structure on compressive strength in pyrolysis furnace
Xiao-min You, Xue-feng She, Jing-song Wang, Qing-guo Xue, and  Ze-yi Jiang
, Available online 22 January 2021, https://doi.org/10.1007/s12613-021-2255-9
Abstract:
CaO-containing carbon pellets (CCCP) were successfully prepared from well-mixed coking coal (CC) and calcium oxide (CaO) and roasted at different pyrolysis temperatures. The effects of temperature, pore distribution and carbon structure on compressive strength of CCCP was investigated in pyrolysis furnace (350–750 °C). The results showed that as the roasting temperature increased, the compressive strength also increased and furthermore, structural defects and imperfections in the carbon crystallites were gradually eliminated to form more organized char structures, thus forming high-ordered CC. Notably, the CCCP preheated at 750 °C exhibited the highest compressive strength. A positive relationship between the compressive strength and pore-size homogeneity was established. A linear relationship between the compressive strength of the CCCP and the carbon layer spacing of CC was observed. Additionally, a four-stage caking mechanism was developed.
Research Article
Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al-Mg
Dong Wu, Wen-ya Li, Qiang Chu, Yang-fan Zou, Xi-chang Liu, and  Yan-jun Gao
, Available online 22 January 2021, https://doi.org/10.1007/s12613-021-2254-x
Abstract:
The bobbin tool friction stir welding process was used to join 6 mm thick 5A06 aluminum alloy plates. Optical microscope was used to characterize the microstructure. The electron backscatter diffraction (EBSD) identified the effect of non-homogeneous microstructure on the tensile properties. It was observed that the grain size in the top of the stir zone (SZ) is smaller than that in the centre region. The lowest ratio of recrystallization and density of the geometrically-necessary dislocations (GNDs) in the SZ was found in the middle near the thermo-mechanically affected zone (TMAZ) being 22% and 1.15×10-13 m-2, respectively. The texture strength of the heat-affected zone (HAZ) is the largest, followed by that in the SZ, with the lowest being in the TMAZ. There were additional interfaces developed which contributed to the strengthening mechanism, and their effect on tensile strength was analysed. The tensile tests identified the weakest part in the joint at the interfaces, and the specific reduction value is about 93MPa.
Research Article
Study on ultra high cycle fatigue fracture mechanism of high quality bearing steel with different deoxidization methods
Wei Xiao, Yan-ping Bao, Chao Gu, Min Wang, Yu Liu, Yong-sheng Huang, and  Guang-tao Sun
, Available online 19 January 2021, https://doi.org/10.1007/s12613-021-2253-y
Abstract:
In order to clarify the mechanism of oxide inclusions on the fatigue crack initiation in a very high cycle fatigue regime, ultrasonic tension-compression fatigue tests (R = -1) with bearing steel deoxidized with Al (Al-deoxidized steel) and Si (Si-deoxidized steel) were carried out and the characterization of inclusions was analyzed. The results show that the main type of inclusions in Si-deoxidized steel and Al-deoxidized steel are silicate and calcium aluminate, respectively. Calcium aluminate inclusions over 15 μm in Si-deoxidized steel are less than those in Al-deoxidized steel due to different inclusion generation processes during melting. Despite different cleanliness and T.O content, the very high cycle fatigue (VHCF) life of Si-deoxidized steel and Al-deoxidized steel appear close. In contrast, the factors that cause fatigue failure differ distinctly. In Al-deoxidized steel, calcium aluminate inclusions are responsible for all the cracks; while in Si-deoxidized steel, the fatigue cracks are triggered by the inhomogeneity of steel matrix, which indicates that the damage mechanisms of the steel matrix can be a critical issue for the steel, as well as 39% of different types of inclusions. The mechanism of fatigue fracture caused by calcium aluminate and silicate inclusions were also discussed and found that: the calcium aluminate inclusion is separated from the steel matrix side first, and the crack source is then formed at the steel matrix side, so the cracks are more easily generated; while silicate inclusions and steel matrix are closely combined in the fatigue process, which has less effect of fatigue life of bearing steels. It is an effective method to produce high-quality bearing steel by using Si/Mn deoxidization, which can not only ensure high fatigue life but also effectively improve the fluidity of liquid steel.
Research Article
Effects of heat treatments on microstructures of TiAl alloys
Wen Yu, Jian-xin Zhou, Ya-jun Yin, Zhi-xin Tu, Xin Feng, Hai Nan, Jun-pin Lin, and  Xian-fei Ding
, Available online 16 January 2021, https://doi.org/10.1007/s12613-021-2252-z
Abstract:
This study aims to investigate the effects of heat treatments on microstructures of γ-TiAl alloys. Two Ti-47Al-2Cr-2Nb alloy ingots were manufactured by casting method and then heat treated in two types of heat treatments. Their microstructures were studied by both optical and scanning electron microscopies. The chemical compositions of two ingots were determined. The ingot with lower Al content only obtains lamellar structures while the one higher in Al content obtains nearly lamellar and duplex structures after heat treatment within 1270°C to 1185°C. A small amount of B2 phase is found to be precipitated in both as-cast and heat-treated microstructures. They are distributed at grain boundaries when holding at a higher temperature, such as 1260°C. However, B2 phase is precipitated at grain boundaries and in colony interiors simultaneously after heat treatments happened at 1185°C. Furthermore, the effects of heat treatments on grain refinement and other microstructural parameters are discussed.
Research Article
Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol-gel coating for active corrosion protection of the magnesium alloy
Yahya Jafari Tarzanagh, Davod Seifzadeh, and  Roghaye Samadianfard
, Available online 16 January 2021, https://doi.org/10.1007/s12613-021-2251-0
Abstract:
The 8-Hydroxyquinoline (8-HQ) intercalated Layered Double Hydroxides (LDH) film as underlayer and sol-gel layer was combined for active corrosion protection of the AM60B magnesium alloy. The LDH, LDH/sol-gel, and LDH@HQ/sol-gel coatings were analyzed using the SEM, FESEM, EDX, XRD, AFM, and EIS methods. The SEM images showed that the surface was entirely coated by the LDH film composed of vertically-grown nanosheets. The same morphology was observed for the LDH/sol-gel and LDH@HQ/sol-gel coatings. Also, almost the same topography was observed for both composite coatings except that the LDH@HQ/sol-gel coating had relatively higher surface roughness. Although the LDH film had the same impedance behavior as the alloy sample in 3.5 wt. % NaCl solution, its corrosion resistance was much higher, which could be due to its barrier properties as well as to the trapping of the chloride ions. Similar to the LDH film, the corrosion resistance of the LDH/sol-gel composite diminished with increasing the exposure time. However, its values were much higher than that of the LDH film, which was mainly related to the sealing of the solution pathways. The LDH@HQ/sol-gel composite showed much better anti-corrosion properties than the LDH/sol-gel coating due to the adsorption of the 8-HQ on the damaged areas through the complexation.
Research Article
Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries
Qi Wang, Yue-yong Du, Yan-qing Lai, Fang-yang Liu, Liang-xing Jiang, and  Ming Jia
, Available online 13 January 2021, https://doi.org/10.1007/s12613-021-2249-7
Abstract:
Antimony sulfide (Sb2S3) is a promising anode for lithium-ion batteries due to its high capacity and vast reserves. However, the low electronic conductivity and severe volume change during cycling hinder its commercialization. Herein our work, a 3D Sb2S3 thin film anode was fabricated via a simple vapor transport deposition system by using natural stibnite as raw material and stainless steel fiber-foil (SSF) as 3D current collector, and a carbon nanotube interphase was introduced onto the film surface (3D Sb2S3@CNT) by a simple dropping-heating process to promote the electrochemical performances. This 3D structure can greatly improve the initial coulombic efficiency to a record of 86.6% and high reversible rate capacity of 760.8 mAh g-1 at 10C. With CNT interphase modified, the Sb2S3 anode cycled extremely stable with high capacity retention of 94.7% after 160 cycles. This work sheds light on the economical preparation and performance optimization of Sb2S3-based anodes.
Research Article
The stress state dependence of dynamic strain aging: Thermal hardening and blue brittleness
Wen-qi Liu and  Jun-he Lian
, Available online 13 January 2021, https://doi.org/10.1007/s12613-021-2250-1
Abstract:
This study aims to discover the stress-state dependence of the dynamic strain aging (DSA) effect on the deformation and fracture behavior of high-strength dual-phase steel at different deformation temperatures (25 °C to 400 °C) and to reveal the damage mechanisms under these various configurations. To achieve different stress states, the pre-designed specimens with different geometry features are employed, and scanning electron microscopy is used to analyze the fracture modes (e.g. dimple or shear mode) and underlying damage mechanism of the investigated material. The DSA is present in this dual-phase steel, showing the Portevin-Le Chatelier (PLC) effect with serrated flow behavior, thermal hardening, and blue brittleness phenomena. It is found that the stress state is contributing distinctly to the DSA effects in terms of both the magnitude of thermal hardening as well as the pattern of blue brittleness. Either lower stress triaxiality or Lode angle parameter is promoting the DSA induced blue brittleness. Accordingly, the damage mechanisms also show dependence on the stress states in conjunction with the DSA effects.
Research Article
Evolution laws of microstructures and mechanical properties during heat treatments for near-α high temperature titanium alloys
Xiao-zhao Ma, Zhi-lei Xiang, Tao Li, Yi-lan Chen, Ying-ying Liu, Zi-yong Chen, and  Qun Shu
, Available online 6 January 2021, https://doi.org/10.1007/s12613-021-2248-8
Abstract:
Evolution laws of microstructures, mechanical properties and fractographs after different solution temperatures were investigated through various analyses methods. With the increasing solution temperatures, contents of primary α phase decreased, and contents of transformed β structures increased. Lamellar α grains dominated the characteristics of transformed β structures, and widths of secondary α lamellas increased monotonously. For as-forged alloy, large silicides with equiaxed and rod-like morphologies, and nano-scale silicides were found. Silicides with large sizes might be (Ti, Zr, Nb)5Si3 and (Ti, Zr, Nb)6Si3. Rod-like silicides with small sizes precipitated in retained β phase, exhibiting near 45° angles with α/β grain boundaries. Retained β phases in as-heat treated alloys were incontinuous. 980STA exhibited excellent combinations of room temperature (RT) and 650℃ mechanical properties. Characteristics of fracture surfaces largely depended on the evolutions of microstructures. Meanwhile, silicides promoted the formation of mico-voids.
Research Article
Considerations of the green intelligent steel processes and narrow window stability control technology on steel quality
Lu Lin and  Jia-qing Zeng
, Available online 1 January 2021, https://doi.org/10.1007/s12613-020-2246-2
Abstract:
In order to promote the intelligent transformation and upgrading of the steel industry, intelligent technology features of the steel industrial are discussed in this paper, which are based on the present situation and existing problems of the steel industry. Based on the research situation abroad and domestic, Function analysis, reasonable positioning and process optimization approach of each process of steel making segment are expounded in this paper, at the same time the present situation of molten steel quality and implementation path under narrow window control are analysed, The idea of stability narrow window control technology of steel quality controlled by multi–factors including composition, temperature, time, cleanliness, consumption (raw material) is proposed, and it provides important guidance for the development of green and intelligent steel manufacturing process in the future.
Research Article
Carbon dots modified silicon nanoparticle for lithium ion batteries
Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and  Cheng-du Liang
, Available online 1 January 2021, https://doi.org/10.1007/s12613-020-2247-1
Abstract:
A new idea is proposed to enhance the interaction between the silicon (Si) particles and binders by using carbon dots (CDs) to functionalize Si particles. Firstly, CDs rich in polar groups were synthesized by a simple hydrothermal method. Then, CDs were loaded on the surface of Si particles by impregnation method to obtain the functionalized Si particles (Si/CDs). Fourier transform infrared reflection (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and High-resolution transmission electron microscope (HRTEM) were used to study the phases and microstructures of Si/CDs. Si/CDs were used as the active material of anode for electrochemical performance experiments. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and constant current charge and discharge experiment were used to study the electrochemical performance of Si/CDs electrodes. The electrodes prepared by Si/CDs have good mechanical structure stability and electrochemical performance. After 150 cycles at 0.2 C, the capacity retention rate of Si/CDs electrode is 64.0%, which is twice as much as the pure Si electrode at the same test conditions.
Research Article
Synthesis of amino functionalized diatomite by glycine and amino silane for high-efficient removal of indoor formaldehyde
Yong-hao Di, Fang Yuan, Xiao-tian Ning, Hong-wei Jia, Yang-yu Liu, Xiang-wei Zhang, Chun-quan Li, Shui-lin Zheng, and  Zhi-ming Sun
, Available online 29 December 2020, https://doi.org/10.1007/s12613-020-2245-3
Abstract:
In order to remove indoor formaldehyde (HCHO) efficiently and cheaply, two kinds of novel amino functionalized diatomite (DE) modified by 3-aminopropyltriethoxysilane (APTS) and glycine (GLY) (i.e. APTS/DE and GLY/DE) were successfully synthesized by wetting chemical method. First, the optimal preparation conditions of the two kinds of amino modified diatomite were determined, and then their microstructure and morphologies were characterized and analyzed. For comparation, a series of batch HCHO adsorption experiments of the two kinds of amino modified diatomite were conducted. According to the experimental results, the pseudo-second-order kinetic model and the Langmuir isotherm model could well describe the adsorption processes, and the maximum adsorption capacity of APTS/DE and GLY/DE prepared under the optimized conditions at 20 ℃ were 5.83 and 1.14 mg·g-1, respectively. In addition, the thermodynamic parameters indicated that the adsorption process is a spontaneous and exothermic process. Overall, the abundant amine groups grafting on the surface of diatomite was derived from Schiff base reaction, which is essential for high-efficient adsorption performance toward HCHO.
Research Article
Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates
Elahe Safary, Reza Taghiabadi, and  Mohammad Hosein Ghoncheh
, Available online 29 December 2020, https://doi.org/10.1007/s12613-020-2244-4
Abstract:
The effect of different cooling rates (2.7, 5.5, 17.1, and 57.5 °C/s) on the solidification parameters, microstructure, and mechanical properties of Al-15Mg2Si composites was studied. The results showed that, high cooling rate refined the Mg2Si particles and changed their morphology to the more compacted forms with less microcracking tendency The average radius and fraction of primary Mg2Si particles decreased from 20 µm and 13.5% to about 10 µm and 7.3%, respectively, as the cooling rate increased from 2.7 °C/s to 57.5 °C/s. Increasing the cooling rate also improved the distribution of microconstituents, decreased the size of grains, and reduced the volume fraction of micropores. The mechanical properties results revealed that augmenting the cooling rate from 2.7 °C/s to about 57.5 °C/s increased the hardness and quality index by 25% and 245%, respectively. High cooling rate also changed the fracture mechanism from brittle dominated to a high-energy ductile mode comprising of extensive dimpled zones.
Research Article
Reciprocating sliding wear properties of sintered Al-B4C composites
Mahmut Can ŞENEL, Yusuf Kanca, and  Mevlüt Gürbüz
, Available online 29 December 2020, https://doi.org/10.1007/s12613-020-2243-5
Abstract:
Pure aluminum and boron carbide reinforced aluminum matrix composites with various content (1, 6, 15, 30 wt.%B4C) were fabricated using the powder metallurgy technique. The influence of boron carbide amount on the mechanical and tribological behavior of sintered Al-B4C was examined. The highest density (~2.54 g/cm3), lowest porosity (4%), maximum Vickers hardness (~75 HV), as well as, lowest weight loss (0.4 mg), and lowest specific wear rate (0.00042 mm3/Nm) under a 7 N load were obtained with Al-30B4C composites. Enhancement of 167% in hardness, a decrease of 75.8% in weight loss, and a decrease of 76.7% in specific wear rate under an applied load of 7 N were determined when compared with pure aluminum. Similarly, the SEM images of the worn surface revealed that the narrowest wear grove (0.85 mm) at a load of 7 N was detected at Al-B4C composite and the main wear mechanism was observed as an abrasive wear mechanism. According to the friction analysis, the coefficient of friction between surfaces increased with increasing boron carbide content and decreasing the applied load. In conclusion, boron carbide is an effective reinforcement material in terms of tribological and mechanical performance of Al-B4C composites.
Research Article
Effects of SiO2 on the preparation and metallurgical properties of acid oxidized pellets
Jian-guang Lu, Chen-chen Lan, Qing Lyu, Shu-hui Zhang, and  Jian-ning Sun
, Available online 12 December 2020, https://doi.org/10.1007/s12613-020-2236-4
Abstract:
The influences of w(SiO2) on the preparation and metallurgical properties including: compressive strength, reduction and softening-melting behaviors of acid oxidized pellets were investigated systematically. And the changes of mineralogical structures, element distribution and pore size distribution were employed for influence mechanism analysis. The results showed that with the increase of w(SiO2), the compressive strength and reduction behaviors of pellets were gradually deteriorated, mainly because that the pellets with high content of SiO2 had the more content of magnetite in the mineralogical structures and some liquid phase appeared, which hindering the continuous crystallization process of hematite. Also, the softening-melting properties of pellets were obviously deteriorated with the increase of w(SiO2). The temperature range of softening-melting zone, the maximum differential pressure and comprehensive permeability index all increased significantly with the increase of w(SiO2). When acid oxidized pellets were used as raw materials for blast furnace smelting, it should be used in combination with high basicity sinter to improve the softening-melting behaviors of the comprehensive charge.
Research Article
Superior corrosion resistance dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding
Wen-rui Wang, Wu Qi, Xiao-li Zhang, Xiao Yang, Lu Xie, Dong-yue Li, and  Yong-hua Xiang
, Available online 12 December 2020, https://doi.org/10.1007/s12613-020-2238-2
Abstract:
The (CoCrFeNi)95Nb5 high entropy alloy (HEA) coatings were successfully fabricated on the substrate of Q235 steel by laser cladding technology. These (CoCrFeNi)95Nb5 HEA coatings possess excellent properties, especially its corrosion resistance is obviously better than that of some typical bulk HEA and common engineering alloys. In order to obtain appropriate laser cladding preparation process parameters, the effects of laser energy density on the microstructure, microhardness and corrosion resistance of (CoCrFeNi)95Nb5 HEA coating were emphatically studied. As the laser energy density increases, the precipitation of Laves phase in (CoCrFeNi)95Nb5 HEA coating gradually decreases, and the diffusion of Fe element in the substrate intensifies, which affects the integrity of the (CoCrFeNi)95Nb5 HEA, resulting in the microhardness of (CoCrFeNi)95Nb5 HEA coatings decreasing. Moreover, the relative content of Cr2O3, Cr(OH)3, and Nb2O5 in the surface passive film of the coating decreases with the increasing of energy density, making the corrosion resistance decrease. This study demonstrates the controllability of high-performance HEA coating with laser cladding technology, which has certain guiding significance for laser cladding preparation of other CoCrFeNi-system HEA coatings.
Research Article
Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading
Peng Li, Mei-feng Cai, Pei-tao Wang, Qi-feng Guo, Sheng-jun Miao, and  Fen-hua Ren
, Available online 12 December 2020, https://doi.org/10.1007/s12613-020-2237-3
Abstract:
For investigating the impact of an opening and joints with different inclination angles on the mechanical response behavior, the energy evolution characteristics and distribution law of granite specimens, uniaxial loading tests were performed on the parallel jointed rock samples with an opening. The results indicate that there is a trend of first decreasing and then increasing of the strength and deformation parameters with the increase of inclination angle, reaching the minimum values when the inclination angle was 45°. The evolution curves of the elastic strain energy and dissipated energy with strain of the samples show the characteristics of step-like gradual mutation. The peak total energy, elastic strain energy, dissipated energy, and total input energy during the failure of the samples showed significant nonlinear characteristics with increasing inclination angle. The opening and joints as well as the change of the inclination angle had significant influences on the proportion of the elastic strain energy of the samples prior to the peak, resulting in the difference of the distribution law of input energy. Moreover, the energy mechanism of the sample failure was discussed, and the energy release was the internal cause of the sudden destruction of the entire rock mass.
Research Article
Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate
Ting-ting Zhang, Wen-xian Wang, Jie Zhang, and  Zhi-feng Yan
, Available online 12 December 2020, https://doi.org/10.1007/s12613-020-2240-8
Abstract:
Interfacial bonding, microstructures and mechanical properties of an explosively-welded H68/AZ31B clad plate were systematically studied. It was found that the bonding interface demonstrated a “like-wavy” structure containing three typical zones/layers: 1) diffusion layer adjacent to the H68 brass plate; 2) solidification layer of melted metals at the interface; and 3) a layer at the side of AZ31B alloy which experienced severe deformation. Mixed copper, CuZn2 and α-Mg phases were observed in the melted-solidification layer. Regular polygonal grains with twins were found at the H68 alloy side while fine equiaxed grains due to the recrystallization were found at the AZ31B alloy side near the interface. Nanoindentation results revealed the formation of brittle intermetallic CuZn2 phases at the bonding interface. The interface was bonded well through metallurgical reactions owing to the diffusion of Cu, Zn and Mg atoms across the interface and the metallurgic reaction of partially melted H68 and AZ31B alloys.
Research Article
Development of an improved CBR model for predicting steel temperature in LF refining
Fei Yuan, An-jun Xu, and  Mao-qiang Gu
, Available online 8 December 2020, https://doi.org/10.1007/s12613-020-2234-6
Abstract:
In the prediction of end-point molten steel temperature of LF, the influence of some factors is nonlinear. The prediction accuracy will be affected by directly inputting these nonlinear factors into the data-driven model. To solve this problem, an improved case-based reasoning model (CBR_HTC) was established through the nonlinear processing of these factors by calculating the heat transfer of the ladle with software Ansys. The results show that CBR_HTC model improves the prediction accuracy of end-point molten steel temperature by 5.33% and 7.00% compared to original CBR model, and 6.66% and 5.33% compared to BPNN model in the range of [-3,3] and [-7,7]. The MAE and RMSE values of CBR_HTC model are also lower. It is verified that the prediction accuracy of the data-driven model can be improved by coupling the mechanism model with the data-driven model.
Research Article
The determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high strength low alloy steel
Yi-shuang Yu, Bin Hu, Min-liang Gao, Zhen-jia Xie, Xue-quan Rong, Gang Han, Hui Guo, and  Cheng-jia Shang
, Available online 8 December 2020, https://doi.org/10.1007/s12613-020-2235-5
Abstract:
Here we present a novel approach of intercritical heat treatment for microstructure tailoring, in which intercritical annealing is introduced between the conventional quenching and tempering. This induced heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite resulting in low yield ratio and high impact toughness in a high strength low alloy steel. The initial yielding behavior and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing, in comparison to the steel with full martensitic microstructure. The increase of yield ratio was related to the reduction of hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering. The excellent low temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases, but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries.
Research Article
Tuning Li3PO4 modification on the electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2
Zhi-kun Zhao, Hui-lin Xie, Zi-yue Wen, Ling Liu, Bo-rong Wu, Shi Chen, Dao-bin Mu, and  Chao-xiang Xie
, Available online 28 November 2020, https://doi.org/10.1007/s12613-020-2232-8
Abstract:
The surface deterioration occurs more and more easily in nickel-rich cathode material with the increase of nickel content. In order to prevent deterioration of active cathode materials and improve the electrochemical performance of nickel-rich cathode material simultaneously, the surface of nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is decorated with stable structure and conductive Li3PO4 by a facile method. The LiNi0.6Co0.2Mn0.2O2-1%wt.%, 2%wt.%, 3%wt.% Li3PO4 samples deliver high capacity retention of more than 85% after 100 cycles at 1C under high voltage of 4.5 V. The effect of different coating amount (0-5%wt.%) for LiNi0.6Co0.2Mn0.2O2 cathode is analyzed detailed and the better amount was 2wt.%. Detailed analysis of structure of the samples during the charge-discharge process is performed by in situ X-ray diffraction. It is indicated that the modification for LiNi0.6Co0.2Mn0.2O2 cathode could protect the well layered structure under the high voltages. In consequence, the electrochemical performance of modified samples is improved a lot.
Research Article
The effect of surface microstructure of arsenopyrite on the attaching behavior of Sulfobacillus thermosulfidooxidans in the presence of additional dissolved As(III)
Zhen Xue, Zhen-yuan Nie, Hong-chang Liu, Wei-bo Ling, Qian Pan, Jin-lan Xia, Lei Zheng, Chen-yan Ma, and  Yi-dong Zhao
, Available online 28 November 2020, https://doi.org/10.1007/s12613-020-2231-9
Abstract:
The understanding of the bacterial adsorption and the evolution of biofilms on different surface structures of arsenopyrite is of great significance to clarify the mechanism of microbe-mineral interfacial interaction and the production of acidic mine drainage in the environment. In this study, the attachment of Sulfobacillus thermosulfidooxidans cells and biofilm formation on arsenopyrite with different surface structures in the presence of additional dissolved As(Ⅲ) were studied. The arsenopyrite slices with specific surface were obtained by electrochemical corrosion at 0.26 V. The scanning electronic microscopy-energy dispersion spectra (SEM-EDS) analyses indicated that the surface of arsenopyrite deficient in sulfur and iron obtained by electrochemical treatment wasn’t favorable for the initial adsorption of bacteria, and the addition of As(Ⅲ) inhibited the adsorption of microbial cells. The epifluorescence microscopy (EFM) results showed that the number of cells attaching on the arsenopyrite surface increased with time, however, when As(Ⅲ) was added, biofilm formation was delayed significantly.
Research Article
Quantitative evaluation of multi-process collaborative operation in steelmaking-continuous casting section
Jian-ping Yan, Qing Liu, Wei-da Guo, and  Jun-guo Zhang
, Available online 26 November 2020, https://doi.org/10.1007/s12613-020-2227-5
Abstract:
The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking-continuous casting section (SCCS). Meanwhile, this evaluation is indeed difficult since it relies on an in-depth understanding of the operating mechanism of SCCS, and few existing methods can be used to conduct the evaluation due to lacking of full-scale consideration on multi-factor related to production operation. In this study, three quantitative models were developed, and evaluated the multi-process collaborative operation level through the laminar flow operation degree, the process matching degree and the scheduling strategy available degree, respectively. By using the evaluation models for the laminar flow operation and process matching levels, the production status of two steelmaking plants of A and B was investigated based on actual production data. The results indicate the average laminar flow operation (process matching) degrees of SCCS are 0.638 (0.610) and 1.000 (0.759) for Plants A and B in the period from April to July 2019. Then, a scheduling strategy based on the optimization of furnace-caster coordinating mode was suggested for Plant A. Simulation experiments showed its higher availability than the greedy-based and manual ones. After applying it, the average process matching degree of SCCS of Plant A increases by 4.6% in the period from September to November 2019. Its multi-process collaborative operation level has been improved with less adjustments and interrupts in casting.
Research Article
Effect of weld microstructure on brittle fracture initiation in a thermally aged boiling water reactor pressure vessel head weld metal
Noora Hytönen, Zai-qing Que, Pentti Arffman, Jari Lydman, Pekka Nevasmaa, Ulla Ehrnstén, and  Pål Efsing
, Available online 26 November 2020, https://doi.org/10.1007/s12613-020-2226-6
Abstract:
The effect of the weld microstructure and inclusions on the brittle fracture initiation is investigated in a thermally aged ferritic high-nickel weld of a reactor pressure vessel head from a decommissioned nuclear power plant. As-welded regions consist mainly of acicular ferrite and reheated regions mainly of polygonal ferrite. The fractographic examination of Charpy V-notch impact toughness specimens reveal large inclusions (0.5–2.5 μm) at the brittle fracture primary initiation sites. Higher impact energies were measured for specimens where brittle fracture initiates from a smaller inclusion or an inclusion further from the V-notch. The density, geometry and chemical composition of the primary initiation inclusions were investigated. The brittle fracture crack initiated as a microcrack either within the multiphase oxide inclusions or from the debonded interfaces between the uncracked inclusions and weld metal matrix. The primary fracture site can be determined in all specimens tested in the lower part of the transition curve, at and below 41 J reference impact toughness energy, but not above, due to the change of the fracture mechanism, and hence the changes in the fracture appearance.
Research Article
Graphene oxide wrapped magnetic nanoparticles composites induced by SiO2 coating with excellent regenerability
Zhong-liang Hu, Hou-quan Cui, Yan-huai Ding, Jing-ying Li, Yi-rong Zhu, and  Zhao-hui Li
, Available online 26 November 2020, https://doi.org/10.1007/s12613-020-2229-3
Abstract:
Graphene oxide (GO) wrapped Fe3O4 nanoparticles were prepared by coating the Fe3O4 nanoparticles (NPs) with SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. Effect of the amount of SiO2 on the morphology, structure, adsorption and regenerability of the composites was studied in detail. Results suggest that an appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composites where Fe3O4@SiO2 NPs were firmly encapsulated by GO nanosheets. As an adsorbent to remove Pb(II) cations from waste water, the optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg•g-1, and the adsorption process is well fitted by Langmuir adsorption model. Notably, it displays an excellent regeneration, maintaining ~90% adsorption capacity for 5 cycles, while other samples decrease their adsorption capacity rapidly. This work could provide a theoretical guidance to improve the regeneration of the GO based adsorbents.
Research Article
Microstructure and mechanical properties of friction pull plug welding for 2219-T87 aluminum alloy with the tungsten inert gas weld
Zhen Shao, Lei Cui, Li-jun Yang, Peng Lu, Hui-miao Wang, Zhuan-ping Sun, and  Jian-ling Song
, Available online 11 November 2020, https://doi.org/10.1007/s12613-020-2222-x
Abstract:
Friction pull plug welding (FPPW) of 2219-T87 Tungsten Inert Gas (TIG) welded joint was studied. The microstructures, precipitate evolution, mechanical properties, and fracture morphologies of the joint were analyzed and discussed. Defect-free joints were obtained by using 7,000 r/min rotational speed, 12 mm axial feeding displacement and 20–22 kN axial force. It was found that, within the welding parameters as mentioned above, metallurgical bonding between the plug and plate can be achieved by the formation of recrystallized grains. According to the different microstructural features, the FPPW joint can be divided into different regions, including such as heat-affected zone (HAZ), thermo-mechanically affected zone (TMAZ), recrystallization zone, heat-affected zone in TIG weld (TIG-HAZ), and thermo-mechanically affected zone in TIG weld (TIG-TMAZ). In TIG-TMAZ, the grains were highly deformed and elongated owing to the shear and extrusion form the plug during FPPW process. The hardness distribution showed that TIG-TMAZ was the area with the lowest strength. The main reason of softening in TMAZ was identified as the dissolution of θ' and the coarsening of θ precipitate particles. In tensile test, the FPPW joint welded with 22 kN axial force showed the highest ultimate tensile strength of 237 MPa. The location of crack and facture was found in TIG-TMAZ. The fracture morphology of the tensile sample showed good plasticity and toughness.
Research Article
Wear behavior of the Zn-38Al-3.5Cu-1.2Mg/SiCp composite with different stabilization treatments
Sheng Liu, Qing Yuan, Yu-tong Sima, Chen-xi Liu, Fang Han, and  Wen-wei Qiao
, Available online 4 November 2020, https://doi.org/10.1007/s12613-020-2217-7
Abstract:
Zn-38Al-3.5Cu-1.2Mg composite reinforced by nano SiCp was fabricated by stirring assisted ultrasonic vibration. In order to improve the abrasive resistance of the Zn-38Al-3.5Cu-1.2Mg/SiCp composite, several stabilization treatments with distinct solid solutions and aging temperatures were designed. The results indicate that the optimal stabilization treatment for the 38Al-3.5Cu-1.2Mg/SiCp composite involves a solution treatment at 380 °C for 6 h and aging at 170 °C for 48 h. The stabilization treatment leads to the formation of dispersive and homogeneous nano SiCp. During the friction wear condition, the nano SiCp limits the microstructure evolution from the hard α(Al, Zn) phase to the soft β(Al, Zn) phase. Besides, the increased amount of nano SiCp improves the grain dimension and contributes to abrasive resistance. Furthermore, the initiation and propagation of crack produced in the friction wear process are suppressed by the stabilization treatment, thereby improving the abrasive resistance of the Zn-38Al-3.5Cu-1.2Mg/SiCp composite.
Research Article
Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge
Jun-jie Zhang, Xiao-yan Zhang, Bo Liu, Christian Ekberg, Shi-zhen Zhao, and  Shen-gen Zhang
, Available online 4 November 2020, https://doi.org/10.1007/s12613-020-2219-5
Abstract:
Municipal solid waste incineration bottom ash (BA), fly ash (FA) and pickling sludge (PS), causing severe environmental pollution, were transformed into glass ceramic foams with the aid of CaCO3 as the pore-foaming agent by sintering in this paper. The effect of BA/FA ratio on the phase composition, pore morphology, pore size distribution, physical properties, glass structure unit of the samples was investigated, with results showing that with the increase of BA/FA ratio, the content of glass phase, Si-O-Si and Q3Si units decrease gradually. The glass transmission temperature of the mixture has also been reduced. These leads to the decrease of the glass viscosity, further causing bubble coalescence and uneven pore distribution. Glass ceramic foams with uniform spherical pores (average pore size of 106 μm) would be fabricated, when the content of BA, FA and PS were 35wt%, 45wt% and 20wt% respectively, contributing to the glass ceramic foams of high performance with bulk density of 1.76 g/cm3, porosity of 56.01% and compressive strength exceeding 16.23 MPa. This versatile and low-cost approach brings new insight of synergistically recycling solid wastes.
Research Article
Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes
Yao-yu Yin, Yan-bai Shen, Si-kai Zhao, Ang Li, Rui Lu, Cong Han, Bao-yu Cui, and  De-zhou Wei
, Available online 21 October 2020, https://doi.org/10.1007/s12613-020-2215-9
Abstract:
ZnSnO3 nanocubes (ZSNCs) with various Pt concentrations (1at%, 2at%, and 5at%) were synthesized by the high-yield and facile one-pot hydrothermal method. The microstructures of the obtained products were characterized by XRD, FESEM, TEM, EDS and XPS. The results showed that the ZSNCs with perovskite structure are approximately 600 nm in side length, and this size was reduced to 400 nm after Pt doping. PtOx (PtO and PtO2) nanoparticle with the diameter of about 5 nm were uniformly coated on the surface of ZSNCs. NO2 sensing properties showed that 1% Pt-ZSNCs exhibited the highest response to NO2 than pure ZSNCs and Pt-ZSNCs with other Pt concentrations. The maximum response of 1 at% Pt-ZSNCs to 500 ppb NO2 was 16.0 at the optimal operating temperature of 125 °C, which was over 11 times higher than that of pure ZSNCs. The enhanced NO2 sensing mechanisms of Pt-ZSNCs were discussed in consideration of catalytic activities and chemical sensitization of Pt doping.
Research Article
Numerical simulation of flash reduction process in a drop tube reactor with variable temperature
Yi-ru Yang, Qi-peng Bao, Lei Guo, Zhe Wang, and  Zhan-cheng Guo
, Available online 20 October 2020, https://doi.org/10.1007/s12613-020-2210-1
Abstract:
A computational fluid dynamics (CFD) model was developed to accurately predicate the flash reduction process, which is considered to be an efficient alternative ironmaking process. Laboratory-scale experiments were conducted in drop tube reactors (DTRs) to verify the accuracy of the CFD model. The reduction degree of ore particles was selected as a critical indicator of model prediction, and the simulated and experimental results were in good agreement. The influencing factors, including the particle size (20–110 μm), peak temperature (1250–1550 °C), and reductive atmosphere (H2/CO), were also investigated. The height variation lines indicated that smaller particles (50 μm) had a longer residence time (3.6 s). CO provided a longer residence time (~1.29 s) compared with H2 (~1.09 s). However, both the experimental and analytical results show that the reduction degree of particles in CO atmosphere only reached 60%, significantly lower than that in H2 atmosphere, even at the highest temperature (1550 °C). The optimum experimental particle size and peak temperature for the preparation of high-quality reduced iron were found to be 50 μm and 1350 °C in H2 atmosphere and 40 μm and 1550 °C in CO atmosphere, respectively.
Research Article
Two refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi: Phase, microstructure and compressive properties
Jiao-jiao Yi, Fu-yang Cao, Ming-qin Xu, Lin Yang, Lu Wang, and  Long Zeng
, Available online 20 October 2020, https://doi.org/10.1007/s12613-020-2214-x
Abstract:
Two new refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, deriving from the well-known HfNbTaTiZr alloy by principal element substitutions, were prepared by vacuum arc-melting. Their phase components, microstructures, and compressive properties in the as-cast state were investigated intensively. The results showed that both alloys are mainly composed of a BCC and cubic laves phase. In terms of the mechanical properties, the yield strength increased remarkably from 926 MPa of HfNbTaTiZr to 1258 MPa of CrHfNbTaTi, meanwhile a promising ductility of around 24.3 % elongation was retained. The morphology and composition of the network-shape interdendritic regions were closely related to the improvement in mechanical properties deduced by elemental substitution. Whereas, dendritic surrounded by the incompact interdendritic shell at the case of the incorporation of Mo deteriorates the yield strength, and results in a typical brittle feature.
Research Article
Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding
Hossein Hosseini-Tayeb and  Seyed Mahdi Rafiaei
, Available online 20 October 2020, https://doi.org/10.1007/s12613-020-2211-0
Abstract:
Stellite-21/WC nanopowders were deposited on Inconel using vibration-assisted laser cladding through different laser parameters. To study about the microstructural and mechanical behaviors, optical and scanning electron microscopes, hardness measurements, and wear characterizations were employed. The results showed that the variation of cooling rate resulted in remarkable effects on the microstructure of the as-cladded composites. Moreover, increasing the laser power from 150 W to 250 W increased the heat input and the dilutions. Also, in the higher power of the laser (i.e. 250 W), dilution was affected by two factors that were scanning rate and powder feeding rate. Through the addition of WC nanoparticles as the reinforcement, the dilution magnitude intensified while the hardness value surprisingly increased from 350 to 700 HV. The wear characterizations indicated that the composites containing 3 wt% WC nanoparticles possessed the highest wear resistance.
Research Article
Special variation of infiltration-growth processed bulk YBCO fabricated using new liquid source: Ba3Cu5O8 (1:1.3) and YbBa2Cu3Oy
Miryala Sushma and  Masato Murakami
, Available online 20 October 2020, https://doi.org/10.1007/s12613-020-2213-y
Abstract:

The utilization of novel materials, high Tsuperconductors in particular, is essential in order to pursue the United Nations Sustainable Goals as well as the increasing worldwide demand for clean and carbon-free electric power technologies. Superconducting magnets have proven to be beneficial in several real-life applications such as transportation, energy production, MRI, drug delivery system etc. To achieve high performance, it is crucial to develop uniform large-grain infiltration-growth processed bulk YBa2Cu3Oy (Y-123) super-magnets. In this paper, we are reporting the magnetic and microstructural properties of large-grain top-seeded infiltration growth processed Y-123 pellet of 20 mm in diameter and 6 mm in height, produced utilizing the liquid Yb-123+Ba3Cu5O8 as liquid source. All samples cut at the top of the bulk have a sharp superconducting transition (~ 1 K wide) with the onset Taround 90 K. On the other hand, in the samples cut from the bottom surface, the onset Tvalues slightly decreased to values between 88 K and 90 K, still with a sharp superconducting transition. The top and bottom samples exhibited the highest remnant value of Jc at 77KH//c-axis of 50 kA/cm2 and 55 kA/cm2, respectively. The remnant Jc and irreversibility field values significantly fluctuated, being quite low in some bottom samples. Scanning electron microscopy (SEM) identified nanometer-size Y-211 secondary phase particles dispersed in the Y-123 matrix. The energy dispersive spectroscopy (EDS) clarified that the decreased critical temperature (Tc) and critical current density (Jc) for the bottom samples were due to liquid phase dispersion within Y-123 phase. 

Research Article
Effects of mechanical vibration on physical, metallurgical and mechanical properties of cast-A308 (LM21) aluminum alloy
Siddharth Yadav, S.P. Tewari, J.K. Singh, and  S.C. Ram
, Available online 14 October 2020, https://doi.org/10.1007/s12613-020-2209-7
Abstract:
The present investigation deals with the improvement in microstructure, physical, and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification. The different frequencies (0, 20, 30, 40, and 50 Hz) at constant amplitude (31 μm) were employed using a power amplifier as the power input device. X-ray diffractometer, optical microscopy, and scanning electron microscopy were used to examine the morphological changes in the cast samples under stationary and vibratory conditions. Metallurgical features of castings were evaluated by ImageJ analysis software. The average values of metallurgical features, i.e., primary α-Al grain size, dendrite arm spacing (DAS), avg. area of eutectic silicon, aspect ratio, and percentage porosity were reduced by 34, 59, 56, 22, and 62% respectively at 30 Hz frequency compared to stationary casting. The mechanical tests of cast samples showed that yield strength, ultimate tensile strength, elongation, and microhardness were increased by 8, 13, 17, and 16%, respectively, at 30 Hz frequency compared to stationary casting. The fractured surface of tensile specimens exhibited mixed-mode fracture behavior due to the appearance of brittle facets, cleavage facets, ductile tearing, and dimple morphologies. The presence of small dimples showed some plastic deformation occurred before fracture.
Research Article
Influence of polymer solution on the morphology and local structure of NH4ZnPO4 powders synthesized by a simple precipitation method at room temperature
Santi Phumying, Thongsuk Sichumsaeng, Pinit Kidkhunthod, Narong Chanlek, Jessada Khajonrit, Somchai Sonsupap, and  Santi Maensiri
, Available online 13 October 2020, https://doi.org/10.1007/s12613-020-2208-8
Abstract:
In this work, NH4ZnPO4 powders were synthesized by a simple precipitation method at room temperature. The effect of PVP, PVA, sucrose and CTAB solution on the morphology and structure of the prepared samples was investigated. The phase composition and morphology of the prepared samples were characterized by using X-ray diffraction and scanning electron microscopy, respectively. Depending on the polymer sources, the hexagonal structure prepared by using non-surfactant of water completely changed to monoclinic structure when CTAB was added into the process. X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) was used to study the local structure and surface electronic structure of the prepared samples confirming that the oxidation states of P and Zn ions are 5+ and 2+, respectively. By using ICP-OES technique, our NH4ZnPO4 powders can be classified as a slow-release fertilizer where less than 15% of the ions was released in 24 h. This study shows that a simple precipitation method using water, PVP, PVA, sucrose and CTAB as a template can be used to synthesize NH4ZnPO4 powders. In addition, this method may be extended for the preparation of other oxide materials.
Research Article
Microstructure analysis and mechanical properties of reaction-bonded B4C-SiC composites
Rong-zhen Liu, Wen-wei Gu, Yu Yang, Yuan Lu, Hong-bin Tan, and  Jian-feng Yang
, Available online 7 October 2020, https://doi.org/10.1007/s12613-020-2207-9
Abstract:
Reaction-bonded B4C-SiC composites are highly promising materials for many advanced technological applications. However, their microstructure evolution mechanism remains unclear. Herein, B4C-SiC composites were fabricated by the Si melt infiltration process. The influence of sintering time and B4C content on the mechanical properties, microstructure, and phase evolution were investigated. X-ray diffraction results showed the presence of SiC, boron silicon, boron silicon carbide, and boron carbide. Scanning electron microscopy results showed that with the increasing of boron carbide addition, the amount of Si content decreased and the amount of unreacted B4C increased. Unreacted B4C diminished with increasing sintering time and temperature. The further microstructure analysis showed a transition area between B4C and Si, with a C concentration marginally higher in the transition area than in the Si area. It indicates that after the silicon infiltration,diffusion mechanism is the primary sintering mechanism of the composites. As the diffusion process progresses, the hardness increases. The maximum values of the Vickers hardness, flexural strength, and fracture toughness of the reaction bonded B4C/SiC ceramic composite with 12wt% B4C content sintered at 1600℃ for 0.5 h are 2600 HV, 330 MPa, and 5.2 MPa·m0.5, respectively.
Research Article

Oxidation behavior of a high Hf nickel-based superalloy in air at 900, 1000 and 1100°C


Jiu-han Xiao, Dong Wang, Li Wang, Xiang-wei Jiang, Kai-wen Li, Jia-sheng Dong, and  Lang-hong Lou
, Available online 1 October 2020, https://doi.org/10.1007/s12613-020-2204-z
Abstract:
In order to investigate the oxidation behavior of a nickel-based superalloy containing high hafnium content (1.34 wt%), isothermal oxidation tests were performed at 900, 1000 and 1100°C for up to 200 h. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) were applied to study the oxidation behavior. Weight gain of the experimental superalloy exhibits a parabola-like curve and no spallation of the oxide scale was observed in the oxidation tests. The alloy presents excellent oxidation resistance and no HfO2 is observed in the oxide scale at 900°C. Elevating the oxidation temperature up to 1000°C, HfO2 particles form in the spinel phases of the scale, and “pegs” HfO2 is observed within and beneath the inner layer of Al2O3 after 200 hours. As the oxidation temperature elevated to 1100°C, “pegs” HfO2 is observed at the early stage of oxidation test (within 25 hours). Formation mechanism of HfO2 and the impact on oxidation resistance are investigated based on the analysis of oxidation tests results at different temperatures.
Research Article
The activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623K
Guo-xing Ren, Song-wen Xiao, Cai-bin Liao, and  Zhi-hong Liu
, Available online 1 October 2020, https://doi.org/10.1007/s12613-020-2205-y
Abstract:
As a part of the fundamental study related to the reduction smelting of both spent lithium-ion batteries and polymetallic sea nodules based on MnO-SiO2-based slags, the activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623 K was investigated with controlled oxygen partial pressure of 10-7, 10-6, and 10-5 Pa. The results show that the solubility of nickel oxide in the slags increased with increasing the oxygen partial pressure. The nickel in both MnO-SiO2 slag and MnO-SiO2-Al2O3 slag existed as NiO under experimental conditions. The addition of Al2O3 in the MnO-SiO2 slag decreased the dissolution of Ni in the slag, and increased the activity coefficient of NiO. Furthermore, the activity coefficient of NiO, referred to solid NiO, can be calculated as: γNiO=8.58(wt% NiO in slag) + 3.18 (SiO2 saturated MnO-SiO2 slag, 1623K);γNiO=11.06(wt% NiO in slag) + 4.07 (Al2O3 saturated MnO-SiO2-Al2O3 slag, 1623K).
Research Article
Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion
Andries Mthisi, Nicholus Malatji, A. Patricia I. Popoola, and  L. Rudolf Kanyane
, Available online 25 September 2020, https://doi.org/10.1007/s12613-020-2200-3
Abstract:
Multicomponent Al20Cr20Fe25Ni25Mn10 alloys were synthesized using spark plasma sintering at temperatures (800 °C, 900 °C and 1000 °C) and holding times (4, 8 and 12 minutes), with aim to develop a high entropy alloy (HEA). The characteristics of spark plasma synthesized (SPSed) alloys were experimental explored through investigation of microstructures, microhardness and corrosion using scanning electron microscope coupled with energy dispersive spectroscopy, Vickers microhardness tester and potentiodynamic polarization respectively. Also, X-ray diffractometry characterization was employed to identify the phases formed on the alloys developed. The EDS results revealed that the alloys consist of elements selected in this work irrespective of varying the sintering parameters. Also, the XRD, EDS and SEM collectively provided evidence that the fabricated alloys are characterized by globular microstructures exhibiting FCC phase formed on a basis of solid solution mechanism; this implies that SPSed alloy shows features of HEAs. The alloy produced at 1000 °C and holding time 12 minutes portrayed an optimal microhardness of 447.97 HV, however, this microhardness decreased to 329.47 HV after heat treatment. The same alloy showed outstanding corrosion resistance performance. Increase in temperature resulted in Al20Cr20Fe25Ni25Mn10 alloy with superior density, microhardness and corrosion resistance over other alloys developed at different parameters.
Research Article
Effect of cermet substrates characteristics on the microstructure and properties of TiAlN coating
Qian-bing You, Ji Xiong, Tian-en Yang, Tao Hua, Yun-liang Huo, and  Jun-bo Liu
, Available online 25 September 2020, https://doi.org/10.1007/s12613-020-2198-6
Abstract:
The composition and structure of substrate material have an important influence on the coating performances, especially the bonding strength and coating hardness,which determines whether the coating can be used. In the paper, the TiAlN coating was deposited on the TC with 0-20wt.% WC by arc ion plating. The influence of cermet substrates characteristics on the structure and properties of TiAlN coating was researched. The results show that TiAlN coating deposited on TC substrates has columnar grain structure. With the increasing of WC, the strength ratio of I(111)/I(200) of TiAlN and the adhesion gradually increases. When there is no WC in the substrate, the preferred orientation of TiAlN coating is (200). As the contents of WC go up, the preferred orientation of TiAlN coating becomes (111) and (200). The biggest difference between the adhesion strength of coating and substrate is the microstructure and composition of the substrate. Scratching results show that the adhesion of TiAlN coating gradually increases from A1 to A5 respectively 53N, 52 N, 56 N, 65 N, 58 N. The coating on the TC substrate with 15wt.% WC has the highest H/E and H3/E2, which indicating the best wear resistance. The failure mechanisms of coated tools are coating peeling, adhesive wear, and abrasive wear. As the cutting speed increases, the amount ofthe flank wear increases, and the durability decreases accordingly. Accompanied by the increasing of WC, the flank wear of coated cermet insert decreases first and then increases. 
Research Article
Effect of graphene-oxide on corrosion, mechanical and biological properties of Mg-based nanocomposite
Saeid Jabbarzare, Hamid Reza Bakhsheshi-Rad, Amir Abbas Nourbakhsh, Tahmineh Ahmadi, and  Filippo Berto
, Available online 25 September 2020, https://doi.org/10.1007/s12613-020-2201-2
Abstract:
The purpose of this paper is to investigate the role of graphene oxide (GO) on mechanical and corrosion behaviors, antibacterial performance, and cell response of Mg-Zn-Mn (MZM) composite. MZM/GO nanocomposites were made with various amounts of GO (0.5, 1.0, and 1.5 wt.%) by the semi powder metallurgy method. The GO influence on the MZM composite was analyzed by hardness, compressive and corrosion tests, and antibacterial and cytotoxicity tests. According to the experimental results, increasing the GO amount increased hardness values, compressive value, and antibacterial performance of the MZM composite, while cell viability and osteogenesis level presented reversed trends. It was shown, based on the electrochemical examination, which the corrosion behavior of the MZM alloy was significantly enhanced after encapsulation of 0.5 wt.% GO. Taken together, the antibacterial and mechanically MZM nanocomposites reinforced with GO to be used for implant applications.
Research Article
Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater
Meng-hao Liu, Zhi-yong Liu, Cui-wei Du, Xiao-qin Zhan, Chun-duo Dai, Yue Pan, and  Xiao-gang Li
, Available online 25 September 2020, https://doi.org/10.1007/s12613-020-2199-5
Abstract:
This study aims at providing systematically insights into the impact of cathodic polarization on the stress corrosion cracking (SCC) behavior of 21Cr2NiMo steel. Slow stress tensile test demonstrated that 21Cr2NiMo steel is highly sensitive to hydrogen embrittlement at strong cathodic polarization. The lowest SCC susceptibility is presented at -775 mVSCE whereas the SCC susceptibility increased remarkably below -950 mVSCE. SEM and EBSD revealed that cathodic potential decline causes a transition in fracture path from transgranular mode to intergranular mode. The intergranular mode transforms from bainite boundaries separation to prior austenitic grain boundaries separation when more cathodically polarized. Furthermore, corrosion pits promoted the nucleation of SCC cracks. In conclusion, the SCC mechanism transforms from the coexistence of hydrogen embrittlement mechanism and anodic dissolution mechanism to typical hydrogen embrittlement mechanism with applied potential decreases.
Research Article
Microstructure and tribological behavior of the nickel-coated-graphite reinforced Babbitt metal composite fabricated by selective laser melting
Xing-ke Zhao and  Xu-sheng Hai
, Available online 19 September 2020, https://doi.org/10.1007/s12613-020-2195-9
Abstract:
For purpose of improving the properties of Babbitt alloys, Ni-coated-graphite reinforced Babbitt metal composite specimens were prepared by selective laser melting (SLM) process, and their microstructures, mechanical and tribological properties were studied using scanning electron microscope (SEM), shear test and dry-sliding wear test, respectively. The results show that most of NCGr particles distribute at boundaries of laser beads in the cross-section of the SLM composite specimens. Microcracks or microvoids form at boundaries of laser beads where NCGr particle accumulating. Both shearing strength and the friction coefficient of the SLM composite specimens decrease with increasing NCGr content. The shearing strength and the friction coefficient of the SLM composite sample with 6% NCGr decrease by around 20% and 33% compared with the NCGr-free sample. Friction mechanism changes from plastic shaping furrow to brittle cutting with increasing NCGr content. A practical Babbitt material with a lower friction coefficient and proper strength could be expected if the dispersion of the NCGr particles is controlled by choosing NCGr particles with thicker Ni layer and precisely controlling laser energy input during SLM process.
Research Article
Experimental study on flow zone distribution and mixing time in a Peirce-Smith copper converter
Hong-liang Zhao, Jing-qi Wang, Feng-qin Liu, and  Hong Yong Sohn
, Available online 19 September 2020, https://doi.org/10.1007/s12613-020-2196-8
Abstract:
Peirce-Smith copper converting involved complex multiphase flow and mixing. In this work, the flow zone distribution and the mixing time in a copper PSC were investigated in a 1:5 scaled cold model. Flow field distribution including dead, splashing and strong-loop zones were measured and a dimensionless equation was developed to correlate the effects of stirring and mixing energy with an error less than 5%. Four positions in the bath including injection, splashing, strong-loop and dead zones were selected to add the hollow salt powders tracer and measure the mixing time. The injection of the quartz flux through the tuyeres or into the backflow point of the splashing wave through a chute is recommended, instead of adding it through a crane hopper from the top of the furnace, to improve the slag-making reaction.
Research Article
Effects of Si/Al, Na/Al, and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings
Shan-xia Xiong, Jian-lei Kuang, Qian-fang Zheng, Ting Xiao, Wen-xiu Liu, Qi Wang, Peng Jiang, and  Wen-bin Cao
, Available online 19 September 2020, https://doi.org/10.1007/s12613-020-2197-7
Abstract:
Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health. To obstruct formaldehyde release, inorganic aluminosilicate coatings prepared by combining metakaolin, silica fume, NaOH and H2O, were applied to the surfaces of wood-based panels. The Si/Al, Na/Al, and H2O/Na2O molar ratios of the coatings were regulated to investigate their effects on the structure and formaldehyde-resistant barrier properties of coatings. The results showed that as the Si/Al molar ratio increased from 1.6 to 2.2, the cracks present in the coatings gradually disappeared and the formaldehyde-resistance rates of the barrier increased. This value also increased as the Na/Al molar ratio increased from 0.9 to 1.2 due to the improvement of the degree of polymerization. As the H2O/Na2O molar ratio increased from 12 to 15, the thickness of the dry film decreased gradually and led to the reduction in the formaldehyde-resistance rate. When the Si/Al, Na/Al and H2O/Na2O molar ratio were 2.2, 1.2, and 12 respectively, the inorganic aluminosilicate coating showed the good performance as a formaldehyde-resistant barrier and its formaldehyde-resistance rate could reach up to 83.2%.
Research Article
The stress corrosion cracking behavior of high-strength mooring chain steel in SO2-polluted coastal atmosphere
Meng-hao Liu, Zhi-yong Liu, Cui-wei Du, Xiao-qin Zhan, Xiao-jia Yang, and  Xiao-gang Li
, Available online 12 September 2020, https://doi.org/10.1007/s12613-020-2192-z
Abstract:
21Cr2NiMo steel is widely used to stabilize offshore oil platforms, however, it suffers from stress corrosion cracking (SCC). Herein, we studied the SCC behavior of 21Cr2NiMo steel in SO2-polluted coastal atmospheres. Electrochemical tests revealed that the addition of SO2 increases the corrosion current. Rust characterization showed that the SO2 addition densities the corrosion products and promotes pitting. Furthermore, the slow strain rate tests demonstrated high susceptibility to SCC at high SO2 contents. Fracture morphologies revealed that the stress-corrosion cracks initiated at corrosion pits and the crack propagation showed transgranular and intergranular cracking modes. In conclusion, the SCC is mix-controlled by anodic dissolution and hydrogen embrittlement mechanisms.
Research Article
Synthesis, characterization and magnetic properties of KFeO2 nanoparticles prepared by a simple egg-white solution route
Thongsuk Sichumsaeng, Nutthakritta Phromviyo, Supree Pinitsoontorn, Pinit Kidkhunthod, Narong Chanlek, and  Santi Maensiri
, Available online 12 September 2020, https://doi.org/10.1007/s12613-020-2194-x
Abstract:
In this work, nanoparticles of potassium ferrite (KFeO2) were synthesized by a simple egg-white solution method upon calcination in air at different temperatures of 500, 600, and 700ºC for 2 h. The effects of calcination temperature on structural and magnetic properties of the synthesized KFeO2 nanoparticles were investigated. By varying the calcination temperature, X-ray diffraction (XRD) and transmission electron microscopy (TEM) results indicated the changes of crystallinity and morphology including particle size, respectively. Significantly, the reduction of particle size of the synthesized KFeO2 was found to have a great influence on the magnetic properties. At room temperature, the synthesized KFeO2 nanoparticles prepared at 600ºC exhibited the highest saturation magnetization (MS) of 26.24 emu•g-1. In addition, the coercivity (HC) increased from 3.51 to 16.89 kA•m-1 with increasing calcination temperature up to 700ºC. The zero-field-cooled (ZFC) results showed that the blocking temperatures (TB) of about 125 and 85 K were observed in the samples calcined at 500 and 600ºC, respectively. Therefore, this work shows that the egg-white solution method is a simple, cost effective, and environmental-friendly for the preparation of KFeO2 nanoparticles.
Research Article
Kinetically controlled synthesis of atomically precise silver nanocluster for catalytic reduction of 4-nitrophenol
Xian-hu Liu, Fei-hong Wang, Cong-ying Shao, Gang-feng Du, and  Bing-qing Yao
, Available online 5 September 2020, https://doi.org/10.1007/s12613-020-2186-x
Abstract:
It is challenging to synthesize atom-precise silver nanoclusters (NCs), which is essential for the development of NCs. In this study, we report the synthesis of atom-precise silver NCs in high purity by a kinetically controlled strategy. The silver NCs were prepared using a mild reducing agent via a one-pot method. The as-prepared silver NCs were confirmed to be Ag49(D-pen)24 (D-pen: D-penicillamine) based on the discussion of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and thermogravimetry (TG) characterizations. Interface structures of the silver NCs were illustrated by both 1H-NMR and FTIR spectroscopy. The silver NCs were supported on the active carbon (AC) to form the Ag NCs/AC which displayed excellent activity for the catalytic reduction of 4-nitrophenol with the kinetic reaction rate constant k of 0.21 min−1, outperforming several catalysts reported previously. Besides, the catalytic activity of Ag NCs/AC kept almost constant after six times of recycle, suggesting its good stability.
Research Article
Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology
Ji-wei Bao, Man-sheng Chu, Zheng-gen Liu, Dong Han, Lai-geng Cao, Jun Guo, and  Zi-chuan Zhao
, Available online 5 September 2020, https://doi.org/10.1007/s12613-020-2188-8
Abstract:
Iron carbon agglomerates (ICA) is considered to be an innovative charge to realize low carbon blast furnace (BF) ironmaking. In this study, the central composite Design (CCD) based on response surface methodology (RSM) was used to synergistically optimize the compressive strength, reactivity and post-reaction strength of ICA. The results show that the iron ore ratio has the most significant influence on compressive strength, reactivity and post-reaction strength. There are significant interactions on the compressive strength and reactivity between the iron ore ratio and carbonization temperature or the iron ore ratio and carbonization time, while the three variables do not interact with each other on the post-reaction strength. In addition, the optimal process parameters are iron ore ratio of 15.30%, carbonization temperature of 1000℃ and carbonization time of 4.27 h, and the model prediction results of compressive strength, reactivity and post-reaction strength are 4026 N, 55.03% and 38.24% respectively, which are close to the experimental results and further verifies the accuracy and reliability of the models.
Research Article
Effect of graphene addition on physico-mechanical and tribological properties of Cu-nanocomposites
Adnan I. Khdair and  A. F. Ibrahim
, Available online 5 September 2020, https://doi.org/10.1007/s12613-020-2183-0
Abstract:
This paper presents experimental investigation of the mechanical and tribological properties of Cu-GNs nanocomposites. We employed electroless coating process to coat GNs with Ag particles to avoid their reaction with Cu and formation of intermetallic phases. We studied the effect of GNs content on structural, mechanical and tribological properties of the produced nanocomposites. The results showed that the coating process is an efficient technique to avoid reaction between Cu and C and the formation intermetallic phases. The addition of GNs should be done wisely since the mechanical and tribological properties improved with increasing GNs up to a certain threshold values. The optimum GNs proved is 0.5%, at which hardness, wear rate and coefficient of friction are improved by 13%, 81.9% and 49.8%, respectively, compared to Cu- nanocomposite. These improved properties are due to the reduced crystallite size, presence of GNs and homogenous distribution of constituents.
Research Article
Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags
Chen-yang Xu, Cui Wang, Ren-ze Xu, Jian-liang Zhang, and  Ke-xin Jiao
, Available online 5 September 2020, https://doi.org/10.1007/s12613-020-2187-9
Abstract:
The effect of Al2O3 on the viscosity of the CaO-SiO2-Al2O3-8wt% MgO-1wt% Cr2O3 (CaO/SiO2=1.0, Al2O3=17-29wt%) slags was investigated in the present work. The results indicated that the viscosity of the slag increased gradually with the increasing of Al2O3 content within the range of 17 to 29wt%, due to the role of Al2O3 acting as a network former in polymerizing the aluminosilicate structure of the slag. The apparent activation energy of the slags increased from 180.85 to 210.23 kJ/mol with increasing the Al2O3 content from 17 to 29wt%, which was consistent with the variation of the critical temperature. It was indicated that the polymerization degree of the present slag was increased with the addition of Al2O3. The Iida’s model was applied to the prediction of the slag viscosity due to the existence of Cr2O3, and it was found that the calculated viscosity values fitted well with the measured ones when both of the temperature and Al2O3 content were at relatively low level in the present study.
Research Article
Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification
Shen-xu Bao, Yong-peng Luo, and  Yi-min Zhang
, Available online 3 September 2020, https://doi.org/10.1007/s12613-020-2182-1
Abstract:
The aim of this investigation is to prepare geopolymeric precursor using vanadium tailing (VT) by thermal activation and modification. The homogeneous blend of VT and sodium hydroxide is calcinated at elevated temperature for activation and then was modified with metakaolin to assemble geopolymeric precursor. During the thermal activation, the VT is corroded by sodium hydroxide, and then forms sodium silicate on the particles surface. After water is added, the sodium silicate coating is dissolved to release silicon species and create alkaline solution environment, and then the metakaolin dissolved in the alkaline environment to provide aluminum species, followed by geopolymerization. Meanwhile, the VT particles are connected together by gel produced from geopolymerization, resulted in geopolymer with excellent mechanical performance. This investigation not only improves the feasibility of geopolymer technology in large-scale and in-situ applications, but also benefits the utilization of VT and other silica-rich solid wastes.
Research Article
Research on fractal and microscopic quantitative characterization of unclassified tailings flocs
Di Zheng, Wei-dong Song, Yu-ye Tan, Shuai Cao, Zi-long Yang, and  Li-juan Sun
, Available online 3 September 2020, https://doi.org/10.1007/s12613-020-2181-2
Abstract:
In this paper, a series of laboratory investigations are carried out to explore the effect of flocculant type on the spatial morphology and microstructural characteristics of flocs in the flocculation and settling of tailings. Four types of flocculants (ZYZ, JYC-2, ZYD and JYC-1) are considered in this study. The fractal characteristics and internal structure of tailings flocs with different flocculant types and settlement heights are analyzed through scanning electron microscopy (SEM) and X-ray microtomography (μCT) scanning experiments based on fractal theory. Results show that unclassified tailings flocs are irregular clusters with fractal characteristics, and the flocculation effect of flocculants has the following trend: ZYZ > JYC-2 > ZYD > JYC-1. The size and the average gray value of tailings flocs decrease as the settlement height decreases. The average gray values at the top and bottom are 144 and 103, respectively. The settlement height remarkably affects the pore distribution pattern, as revealed in the constructed three-dimensional pore model of tailings flocs. The upper part of the flocs has good penetration, while the bottom part is mostly dispersed pores. The number of pores increases exponentially as the settlement height increases, whereas their size initially increases and then decreases as settlement height increases.
Research Article
3D graphitic carbon sphere foams as sorbents for cleaning oil spills
Sai-sai Li, Hai-jun Zhang, Long-hao Dong, Hai-peng Liu, Quan-li Jia, and  Dong Xu
, Available online 3 September 2020, https://doi.org/10.1007/s12613-020-2180-3
Abstract:
Frequent offshore oil spill accidents, industrial oily sewage and the indiscriminate disposal of urban oily sewage have caused serious impacts on human living environment and health. The traditional oil-water separation methods not only cause easily environmental secondary pollution, but also waste of limited resources. Therefore, in this work, 3D graphitic carbon sphere foams (3D-foams) possessed three-dimensional porous structure with pore size distribution of 25~200 μm, and high porosity of 62% were prepared for oil adsorption via foam-gel casting method using graphitic carbon spheres as starting materials. The resulted indicated that the water contact angle of as-prepared 3D-foams was 130°. The contents of graphitic carbon spheres (GCS) greatly influenced the hydrophobicity, water contact angle (WCA) and microstructure of the as-prepared samples. The adsorption capacities of as-prepared 3D-foams for paraffin oil, vegetable oil and vacuum pump oil were about 12~15 g/g, which were 10 times of that graphitic carbon spheres powder.
Research Article
Process-structure-property relationship for plasma sprayed iron based amorphous-crystalline composite coatings
Abhishek Pathak, Biswajyoti Mukherjee, Krishna Kant Pandey, Aminul Islam, Pavan Bijalwan, Monojit Dutta, Atanu Banerjee, and  Anup Kumar Keshri
, Available online 27 August 2020, https://doi.org/10.1007/s12613-020-2171-4
Abstract:
The present study explores the fabrication of Fe-based amorphous coating by air plasma spraying and its dependency on the coating parameters (plasma power, primary gas flow rate, stand-off distance and powder feed rate). XRD of the coatings deposited at optimized spray parameters showed the presence of amorphous-crystalline phase. Coatings deposited at lower plasma power and moderate gas flow rate exhibited better density, hardness and wear resistance. All coatings demonstrated equally good resistance against corrosive environment (NaCl). Mechanical, wear and tribological studies indicate that a single process parameter optimization cannot provide good coating performance but instead, all process parameters are having their unique role in defining better properties to the coating by controlling the in-flight particle temperature and velocity profile followed by the cooling pattern of molten droplet before impingement on the substrate.
Research Article
Separation of tungsten and molybdenum with solvent extraction using functionalized ionic liquid tricaprylmethylammonium bis(2,4,4-trimethylpentyl) phosphinate
Fei Cao, Wei Wang, De-zhou Wei, and  Wen-gang Liu
, Available online 27 August 2020, https://doi.org/10.1007/s12613-020-2172-3
Abstract:
Functionalized ionic liquids (FILs) as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time. The effects of initial pH, extractant concentration, metal concentrations in the feed, etc., were investigated in detail. The results showed that tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate ([A336][Cyanex272]) could selectively extract W over Mo at an initial pH of 5.5, and the best separation factor βW/Mo of 25.61 was obtained for a solution with low metal concentrations (WO3: 2.49 g/L, Mo: 1.04 g/L). The [A336][Cyanex272] system works well for solutions of different W/Mo molar ratios and different concentrations of metal ions in the feed. The chemical reaction between [A336][Cyanex272] and W followed the ion association mechanism, which was further proven by the FTIR spectra of loaded [A336][Cyanex272] and free extractant. The stripping experiments indicated that 95.48% W and 100.00% Mo were stripped by a 0.20 mol/L sodium hydroxide solution. Finally, selective extraction of W from Mo was obtained for two synthetic solutions of different high metal concentrations, and the separation factor βW/Mo reached 23.24 and 17.59, respectively. The results suggested the feasibility of [A336][Cyanex272] as an extractant for the separation of tungsten and molybdenum.
Research Article
Tunable fabrication of single-crystalline CsPbI3 nanobelt and its application as photodetectors
Tao Yang, Ya-peng Zheng, Kuo-Chih Chou, and  Xin-mei Hou
, Available online 27 August 2020, https://doi.org/10.1007/s12613-020-2173-2
Abstract:
Recently, lead halide perovskites have received much attention and be a candidate material for various optoelectronic field for their high performance as light absorbers. Here we report the growth of CsPbI3 nanoblet via a solution process. The single-crystalline CsPbI3 nanobelt have a high yield with uniform in morphology by controlling the PbI2 amount. The single-crystalline CsPbI3 nanobelt possess a mean width, length and thickness of 100 nm, 5 µm and 20 nm respectively. Based on this, the photodetectors (PDs) based on individual CsPbI3 nanobelt were constructed and have a good performance with an external quantum efficiency and responsivity of 2.39×105 % and 770 A·W-1, respectively. More importantly, the PDs show a high detectivity up to 3.12×1012 Jones, which is on par with that of Si PDs. It exhibits as a promising candidate applied in various optoelectronic nanodevices.
Research Article
Interface behavior of chalcopyrite during flotation from cyanide tailings
Xue-min Qiu, Hong-ying Yang, Guo-bao Chen, Lin-lin Tong, Zhe-nan Jin, and  Qin Zhang
, Available online 27 August 2020, https://doi.org/10.1007/s12613-020-2170-5
Abstract:
Interface characteristics of cyanide tailings are very different compared with those of raw ore. Valuable elements could not be comprehensively recovered via flotation from cyanide tailings originating from Shandong province, China. Herein, the interface and floatability of these tailings were investigated. The chalcopyrite in the cyanide tailings investigated herein was fine with a porous surface. The floatability of 68% chalcopyrite was similar to galena in the presence of a collector. This part of chalcopyrite was compactly wrapped in a layer of fine galena particles. The recovery of chalcopyrite sharply decreased as the nonpolar oil residue in cyanide tailings was removed through alcohol extraction; however, this removal had no effect on galena. The other chalcopyrite in the flotation tailings was covered with an oxidation layer consisting of O, Fe, S, Pb, Cu, Zn, and Si.
Research Article
Prediction of Charpy V-notch impact energy of low carbon steel by using shallow neural network and deep learning
Si-wei Wu, Jian Yang, and  Guang-ming Cao
, Available online 14 August 2020, https://doi.org/10.1007/s12613-020-2168-z
Abstract:
In the present work, the impact energy prediction model of low carbon steel was investigated based on the industrial data. A three layer neural network, extreme learning machine and deep neural network were compared with different activation functions, structure parameters and training functions. To determine the optimal hyper-parameters of deep neural network, Bayesian optimization was applied. The model with best performance was applied to investigate importance degree of process parameter variables on impact energy of low carbon steel. The results show that deep neural network obtains better prediction results than that of shallow neural network due to the multiple hidden layers improving the learning ability of the model. Among all the models, the Bayesian optimization deep neural network achieves the highest correlation coefficient of 0.9536, lowest mean absolute relative error of 0.0843 and lowest root mean square error of 17.34 J for predicting the impact energy of low carbon steel. Among all the variables, the main factors affecting the impact energy of low carbon steel with final thickness of 7.5 mm are the thickness of the original slab, the thickness of intermediate slab and rough rolling exit temperature on the specific hot rolling production line.
Research Article
New insights into the properties of high manganese steel
Wolfgang Bleck
, Available online 14 August 2020, https://doi.org/10.1007/s12613-020-2166-1
Abstract:

In the Collaborative Research Centre 761 "Steel ab initio - quantum mechanics guideddesign of new Fe based materials", scientists and engineers from RWTHAachen University and the Max Planck Institute for Iron Research have conductedresearch on mechanism-controlled material development with the particularexample of high manganese alloyed steels. From 2007 to 2019, a total of 55 partprojects and 4 transfer projects with industrial participation (some runninguntil 2021) have dealt with material and process design as well as materialcharacterization. The basic idea of the Collaborative Research Centre was todevelop a methodologically new approach for the design of structural materials. 

This paper focuses on selected results with respect tothe mechanical properties of high manganese steels, the underlying physicalphenomena, and on specific characterization and modelling tools for this newclass of materials. It is worked out that these steels have a microstructurethat has to be characterized with modern methods on the nm-scale. Regarding theprocess routes, the generation of segregations must be taken into account.Finally, the mechanical properties show a characteristic temperature dependenceand contain peculiarities in the fracture behavior. The mechanical propertiesand especially the bake hardening are affected by short-range ordering phenomena.The strain hardening can be adjusted in a so far not possible scope which makethese steels attractive for demanding sheet steel applications.


Research Article
Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate
Lu-ming Chen, Yu-lan Zhen, Guo-hua Zhang, De-sheng Chen, Li-na Wang, Hong-xin Zhao, Fan-cheng Meng, and  Tao Qi
, Available online 10 August 2020, https://doi.org/10.1007/s12613-020-2160-7
Abstract:
In the present study, the carbothermic reduction of vanadium titanomagnetite concentrates (VTC) with the assistance of Na2CO3 was carried out in argon atmosphere between 1073 K and 1473 K. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to investigate the phase transformations during the reaction process. By investigating the reaction between VTC and Na2CO3, it was concluded that molten Na2CO3 could break the structure of titanomagnetite by combining with the acidic oxides (Fe2O3, TiO2, Al2O3, and SiO2) to form the Na-rich melt, and release FeO and MgO. Therefore, Na2CO3 could accelerate the reduction rate. In addition, the addition of Na2CO3 was also beneficial for the agglomeration of iron particles and the slag-metal separation by decreasing the viscosity of slag. Thus, the Na2CO3 assisted carbothermic reduction will be a promising method to treat VTC at low temperatures.
Research Article
Investigation on the strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel
Mehdi Shaban Ghazani and  Beitallah Eghbali
, Available online 10 August 2020, https://doi.org/10.1007/s12613-020-2163-4
Abstract:
In the present research, the hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800-1200˚C and constant strain rates of 0.001, 0.01, 0.1, and 1 s-1. The hot flow curves were utilized for determination of the strain hardening exponent, strain rate sensitivity exponent and construction of the processing maps. Variation of the strain hardening exponent with strain was used for prediction of the microstructural evolutions during hot deformation. Four types of variations were distinguished which reflect the occurrence of dynamic recovery, single and multiple peak dynamic recrystallization and the interaction between dynamic recrystallization and precipitation. Also, the strain rate sensitivity variations at the applied strain of 0.8 and strain rate of 0.1 s-1 was compared with microstructural evolutions and the results demonstrated the existence of reliable connection between this parameter and evolved microstructures. Furthermore, the power dissipation map at the applied strain of 0.8 was compared with the resultant microstructures at some predetermined deformation conditions. It was concluded that the microstructural evolutions is shifted from complete to partial dynamic recrystallization and dynamic recovery with increasing the power dissipation ratio.
Research Article
New insights into the flotation response of brucite and serpentine of different conditioning time: Surface dissolution behavior
Ya-feng Fu, Wan-zhong Yin, Chuan-yao Sun, Bin Yang, Jin Yao, Hong-liang Li, Chuang Li, and  Hyunjung Kim
, Available online 10 August 2020, https://doi.org/10.1007/s12613-020-2158-1
Abstract:
Gangue minerals inadvertently dissolution frequently plays a detrimental role on the flotation of valuable minerals. In this paper, the effect of conditioning time on the flotation separation of brucite and serpentine was investigated. By analyzing the Mg2+ concentration, the relative content of elements, and pulp viscosity, the effect of mineral dissolution on the brucite flotation was studied. The artificial mixed mineral flotation results (with -10 μm serpentine) showed that, with the conditioning time extended from 60 s to 360 s, a large amount of Mg2+ on the mineral surface gradually dissolved into the pulp, resulting in a decrease of brucite recovery (from 83.83% to 76.79%), whereas the recovery of serpentine increased from 52.12% to 64.03%. Moreover, the SEM observation was applied to analyze the agglomeration behavior of brucite and serpentine, which clearly demonstrated the difference of adhesion behavior under various conditioning time. Finally, the total interaction energy that carried out by extended DLVO (E-DLVO) theory also supports the conclusion that the gravitational force between brucite and serpentine increases significantly with the increase of conditioning time.
Research Article
Process and kinetics of the selective extraction of cobalt from high-silicon low-grade cobalt ore by ammonia leaching
Lei Tian, Ao Gong, Xuan-gao Wu, Xiao-qiang Yu, Zhi-feng Xu, and  Li-jie Chen
, Available online 10 August 2020, https://doi.org/10.1007/s12613-020-2161-6
Abstract:
In this study, an ammonia-based system was used to selectively leach Co from an African high-silicon low-grade Co ore. In this process, other elemental impurities were prevented from leaching; hence, the subsequent process was simple and environmentally friendly. The results revealed that the leaching ratio of Co can reach 95.61% using (NH4)2SO4 as a leaching agent under experimental conditions, which involved a (NH4)2SO4 concentration, reductant dosage, leaching temperature, reaction time, and liquid–solid ratio of 300 g/L, 0.7 g, 353 K, 4 h, and 6:1, respectively. The leaching kinetics of Co showed that the apparent activation energy of Co leaching was 72.97 kJ/mol (i.e., in the range of 40–300 kJ/mol). This indicated that the leaching of Co from the Co ore was controlled using an interfacial chemical reaction. The reaction orders of the particle size and (NH4)2SO4 concentration during leaching were 0.21 and 1.5, respectively. The leaching kinetics model of the Co developed in this study can be expressed as 1-(1-α)1/3 = 28.01 × 103×r0-1 × [(NH4)2SO4]1.5 × exp(-72970/8.314T).
Research Article
Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel
Rong-jian Shi, Zi-dong Wang, Li-jie Qiao, and  Xiao-lu Pang
, Available online 4 August 2020, https://doi.org/10.1007/s12613-020-2157-2
Abstract:
The critical influence of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement (HE) of high-strength steel is investigated in this study. The mechanical strength and elongation of the quenched and tempered steel (919 MPa yield strength, 17.11% elongation) are higher than those of the hot-rolled steel (690 MPa yield strength, 16.81% elongation) due to the strengthening effect of Ti3O5–Nb(C,N) in-situ nanoparticles. The HE susceptibility is substantially mitigated to 55.52%, which is approximately 30% lower than that of steels without in-situ nanoparticles (84.04%) and is attributed to the heterogeneous nucleation of Ti3O5 nanoparticles increasing the density of carbides. Meanwhile, compared with hard TiN inclusions, the spherical and soft Al2O3–MnS core–shell inclusions that nucleate on the in-situ Al2O3 particles could also suppress HE. The in-situ nanoparticles generated by trace-element regional supply have strong potential in the development of high-strength and hydrogen-resistant steels.
Research Article
Effect of ‎2-Mercaptobenzothiazole concentration on the sour corrosion behavior of API X60 pipeline steel: Electrochemical parameters and adsorption mechanism
Masoud Sabzi, Amir Hayati Jozani, Farzad Zeidvandi, Majid Sadeghi, and  Saeid Mersagh Dezfuli
, Available online 30 July 2020, https://doi.org/10.1007/s12613-020-2156-3
Abstract:
The effect of 2-Mercaptobenzothiazole concentration on the sour corrosion behavior of API X60 pipeline steel in an environment containing H2S at 25 °C and at the presence of 0, 2.5, 5, 7.5 and 10 g/L of 2-Mercaptobenzothiazole inhibitor was investigated. In order to examine the sour corrosion behavior of API X60 pipeline steel, Open Circuit Potential (OCP), potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) tests were used. The Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) were also used to analyze corrosion products. The results of OCP and potentiodynamic polarization both showed that 2-Mercaptobenzothiazole reduces the speed of both anodic and cathodic reactions. Assessment of  the Gibbs free energy of the inhibitor showed that it has a value of more than –20 kJ.mol−1and less than –40 kJ.mol−1. Therefore, the adsorption of 2-Mercaptobenzothiazole on the surface of the API X60 pipeline steel was occurred both physically and chemically. The latter was particularly intended to be adsorbed. Also, as the Gibbs free energy of the inhibitor took a negative value, it was concluded that the adsorption of 2-Mercaptobenzothiazole on the surface of the pipeline steel occurs spontaneously. The results of the EIS indicated that with increase of 2-Mercaptobenzothiazole inhibitor concentration, the corrosion resistance of API X60 steel is increased.An analysis of the corrosion products revealed that iron sulfide compounds are formed on the surface. In sum, the results showed that the increase of the inhibitor concentration results in a decrease in the corrosion rate and an increase ininhibitory efficiency (%IE). Additionally, it was found that 2-Mercaptobenzothiazole adsorption process on the API X 60 steel surfaces in a H2S-containing environment follows the Langmuir adsorption isotherm.And the adsorption process is carried out spontaneously. 
Research Article
Insights into U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method
Yu-hui Liu, Meng Tang, Shuang Zhang, Yu-ling Lin, Ying-cai Wang, You-qun Wang, Ying Dai, Xiao-hong Cao, Zhi-bin Zhang, and  Yun-hai Liu
, Available online 30 July 2020, https://doi.org/10.1007/s12613-020-2154-5
Abstract:
To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electrolysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R-MoS2 were investigated and the obtained nanosheets were characterized with SEM, HRTEM, XRD, FTIR, and XPS. The results show that PPy/3R-MoS2 exhibited enhanced adsorption capacity towards U(VI) compared to pure 3R-MoS2 and PPy; the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: 1) negatively charged PPy/3R-MoS2 nanosheets attracted UO22+ by electrostatic attraction; 2) exposed C, N, Mo, and S atoms complexed with U(VI) through coordination; 3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continuously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with high adsorption capacity and chemical stability provides a new direction for the removal of radionuclide.
Research Article
A study of gold leaching performance and mechanism by sodium dicyanamide
Gen-zhuang Li, Jue Kou, Yi Xing, Yang Hu, Wei Han, Zi-yuan Liu, and  Chun-bao Sun
, Available online 26 July 2020, https://doi.org/10.1007/s12613-020-2153-6
Abstract:
In the present work, sodium dicyanamide (SD) was used as a leaching reagent for gold recovery, and the effects of SD dosage and solution pH on gold leaching performance were investigated. It was found that a gold recovery of 34.8% was obtained when SD was used as the sole leaching reagent at a dosage of 15 kg/t. It was also found that in the presence of a certain amount of potassium ferrocyanide (PF) in the SD solution, the gold recovery increased from 34.8% to 57.08%. The leaching kinetics of SD with and without PF was studied using the quartz crystal microbalance with dissipation (QCM-D) technique. According to the QCM-D results, the gold leaching rate increased from 4.03 ng/cm²∙min-1 to 39.99 ng/cm²∙min-1 when the SD concentration increased from 0 to 0.17 mol/L, and from 39.99 ng/cm²∙min-1 to 272.62 ng/cm²∙min-1 when 0.1 mol/L of PF was used in combination with SD. The pregnant solution in the leaching tests was characterized by X-ray photoelectron spectroscopy (XPS) and ESI-MS. The results indicated that Au and (N(CN)2)ˉ in the SD solution formed a series of metal complex ion, [AuNax(N(CN)2)(x+2)]ˉ (x = 1, 2, 3, or 4).
Research Article
Liquid-liquid extraction of phosphorus from sulfuric acid solution using benzyl-di-methyl amine
Sadia Ilyas, Rajiv Ranjan Srivastava, and  Hyunjung Kim
, Available online 24 July 2020, https://doi.org/10.1007/s12613-020-2151-8
Abstract:
This study addresses the liquid-liquid extraction behavior of phosphorus from a sulfuric acid solution using benzyl-di-methyl amine (BDMA) in kerosene. The extraction equilibria investigated with varied BDMA concentration could reveal the formation of ¯(3[BDMA].[H3PO4]) into the organic phase. The thermodynamic properties determined at the different temperatures indicated that the process exhibits exothermic nature with a calculated enthalpy (ΔH°) of −24.0 kJ/mol. The organic-to-aqueous phase ratio (O/A) was varied to elucidate the quantitative extraction of phosphorus. The McCabe–Thiele diagram plotted for the extraction isotherm was validated for the requirement of three counter-current stages in extraction at an O/A ratio, 2.0/3.5. The back-extraction of phosphorus from the loaded organic phase was quantitatively achieved by contacting 4.0 mol/L H2SO4 solution in three stages of counter-current contact at an O/A ratio, 3/2. The study can potentially be applied to phosphorus removal from sulphuric acid leach solution of monazite processing and many other solutions.
Research Article
Effect of calcination temperature on the pozzolanic activity of maize straw stem ash treated with portlandite solution
Ting-ye Qi, Hao-chen Wang, Guo-rui Feng, Yu-jiang Zhang, Jin-wen Bai, and  Yan-na Han
, Available online 24 July 2020, https://doi.org/10.1007/s12613-020-2148-3
Abstract:
The effect of calcination temperature on the pozzolanic activity of maize straw stem ash (MSSA) was evaluated. The MSSA samples calcined at temperature values of 500, 700, and 850 °C were dissolved in portlandite solution for 6 h, and the residual samples were obtained. The MSSA and MSSA residual samples were analyzed using FT-IR, XRD, SEM, and XPS to determine the vibration bonds, minerals, microstructure, and Si 2p transformation behavior. The conductivity, pH value, loss of conductivity with dissolving time of the MSSA-portlandite mixed solution were determined. The main oxide composition of MSSA were silica and potassium oxide. The dissolution of Si4+ content of MSSA at 500 °C were high compared to those of the other calcination temperatures. The conductivity and loss of conductivity of MSSA at 700 °C were high compared to those of the other calcination temperatures at a particular dissolving time due to the higher KCl content in MSSA at 700 °C. C-S-H was easily identified in MSSA samples using XRD, and small cubic and nearly spherical particles of C-S-H were found in the MSSA residual samples. In conclusion, the optimum calcination temperature of MSSA having the best pozzolanic activity is 500 °C but avoid excessive agglomeration.
Research Article
The influence of gamma irradiation on the electrical, thermal, and electrochemical properties of reduced graphene oxide
M.M. Atta, H.A. Ashry, G.M. Nasr, and  H.A.Abd EI-Rehim
, Available online 17 July 2020, https://doi.org/10.1007/s12613-020-2146-5
Abstract:
In this paper, the properties of γ-ray reduced graphene oxide (GRGOs) samples are compared to hydrazine reduced graphene oxide (HRGO) sample. Characterization techniques FTIR, XRD, Raman spectra, Brunauer-Emmett-Teller (BET) surface area analysis, TGA, electrometer, and cyclicvoltemety were used for the verification of the reduction process, structural changes & defects, and measure the thermal, electrical, and electrochemical properties of samples. It was concluded that γ- Irradiation distorts the structure of GRGOs with massive defects owing to the greater formation of new smaller sp2 - hybridized domains compared to HRGO. The thermal stability of GRGOs was higher than HRGO indicating the more efficient removal of thermally-labile oxygen species by γ-ray. Furthermore, RRGOs showed a pseudocapacitive behavior compared to the electrical double layer behavior of HRGO. The most interesting obtained results are the enhanced specific capacitance of GRGOs to nearly three times in comparison to HRGO which indicates the preference for radiation reduction method in energy storage applications.
Research Article
A new electrochemical process on the recovery metallic Mn from waste LiMn2O4 based Li-ion batteries in NaCl-CaCl2 melts
Jing-long Liang, Dong-bin Wang, Le Wang, Hui Li, Wei-gang Cao, and  Hong-yan Yan
, Available online 16 July 2020, https://doi.org/10.1007/s12613-020-2144-7
Abstract:
A new method for the recovery of Mn is proposed via direct electrochemical reduction of LiMn2O4 from the waste lithium-ion batteries in NaCl-CaCl2 melts at 750℃. The results show the reduction process of LiMn2O4 by electrochemical methods on the coated electrode surface are in three steps, Mn(IV) → Mn(III) → Mn(II) → Mn. The products of electro-deoxidation are CaMn2O4, MnO, (MnO)x(CaO)1-x and Mn. Metal Mn appears when the electrolytic voltage increased to 2.6 V. Increasing the voltage could promote the deoxidation reaction process. With the advancement of the three-phase interline(3PI), the electric deoxygenation gradually proceeds from the outward to core. With the high voltage, the kinetic process of the reduction reaction is accelerated, and double 3PI in different stages are generated.
Research Article
Recovery gold from refractory gold ore: Effect of pyrite on the stability of the thiourea leaching system
Hong Qin, Xue-yi Guo, Qing-hua Tian, and  Lei Zhang
, Available online 12 July 2020, https://doi.org/10.1007/s12613-020-2142-9
Abstract:
Extraction of gold from refractory gold ores without side effects is an extremely motivating goal. However, most refractory gold ores contain large amount of sulfide, such as pyrite. Herein, investigation of the influence of sulfide on gold leaching process is important for utilization of refractory gold ores. For this purpose, the effects of pyrite on the stability of the thiourea system were systematic investigated under different parameters. The results showed that the decomposition rate of thiourea was accelerated sharply by the pyrite. As further proof, the effect of pyrite on gold recovery with thiourea leaching systems was verified by a series of experiments. The decomposition efficiency of thiourea reduced by 40% and the recovery efficiency of Au increased by 56% after being removed the sulfide by roasting. Under the optimal condition, the gold recovery efficiency was 83.69% with the decomposition of thiourea of only 57.92%. Finally, we postulated that the high consumption of thiourea may be not only due to the adsorption by mineral particles, but also the catalytic decomposition by some impurities in the ores, such as pyrite and soluble ferric oxide.
Research Article
Microstructure and phase elemental distribution in high-boron multi-component cast irons
Yuliia G. Chabak, K. Shimizu, Vasily G. Efremenko, Michail A. Golinskyi, Kenta Kusumoto, Vadim I. Zurnadzhy, and  Alexey V. Efremenko
, Available online 9 July 2020, https://doi.org/10.1007/s12613-020-2135-8
Abstract:
The novel cast irons of nominal chemical composition (wt.%) 0.7C-5W-5Mo-5V-10Cr-2.5Ti were fabricated with the additions of 1.6 wt.% B and 2.7 wt.% B. The aim of this work was a study of the boron’s effect on the alloys’ structural state and phase elemental distribution with respect to the formation of wear-resistant structure constituents. It was found that the alloy containing 1.6 % B was composed of three different eutectics: (a) “M2(C,B)5+ferrite” having a “Chinese Script” morphology (89.8 vol. %), (b) “M7(C,B)3+Austenite” having a “Rosette” morphology, and (c) “M3C+Austenite” having a “Ledeburite”-shaped morphology (2.7 vol. %). With a boron content of 2.7 wt.%, the bulk hardness increased from 31 HRC to 38.5 HRC. The primary carboborides M2(C,B)5 with average microhardness of 2797 HV appeared in the structure with a volume fraction of 17.6 vol.%. The volume fraction of eutectics (a) and (b, c) decreased to 71.2 vol.% and 3.9 vol. %, respectively. The matrix was “ferrite/austenite” for 1.6 wt.% B and “ferrite/pearlite” for 2.7 wt.% B. Both cast irons contained compact precipitates of carbide (Ti,M)C and carboboride (Ti,M)(C,В) with a volume fraction of 7.3-7.5 vol. %. The elemental phase distributions, discussed based on EDX-analysis and the appropriate phase formulae, are presented.
Research Article
Growth mechanism and photocatalytic evaluation of flower-like ZnO microstructures prepared with SDBS assistance
Hong-mei Shao, Xiao-yi Shen, Xue-tian Li, Yong Cui, Wei Zhang, Wen-di Xu, Zhong-cai Shao, and  Yu-chun Zhai
, Available online 9 July 2020, https://doi.org/10.1007/s12613-020-2138-5
Abstract:
Flower-like ZnO microstructures were successfully obtained by hydrothermal method employing ZnSO4/(NH4)2SO4 as raw material.The operating parameters including hydrothermal temperature, OH-/Zn2+ molar ratio, time and additive amount of dispersant on the phase structure and micromorphology of ZnO particles were investigated. The synthesis conditions of flower-like ZnO microstructures were hydrothermal temperature of 160ºC, OH-/Zn2+ molar ratio of 5:1, reaction time of 4 h, dispersant of 4 mL. Flower-like ZnO microstructures are comprised of hexagon shape ZnO rods arranged in the form of radiative way. The degradation experiments of Rhodamine B (RhB) with a degradation efficiency of 97.6% exposure for 4 h showed that flower-like ZnO microstructures exhibited an excellent photocatalytic capacity in sunshine. The growth mechanism of flower-like ZnO microstructures was schematically presented.
Research Article
Solid state reaction of CaO-V2O5 mixture: A fundamental study for the vanadium extraction process
Jun-yi Xiang, Xin Wang, Gui-shang Pei, Qing-yun Huang, and  Xue-wei Lv
, Available online 9 July 2020, https://doi.org/10.1007/s12613-020-2136-7
Abstract:
The aim of this study was to investigate the phase transformation and kinetics of the solid-state reaction of CaO-V2O5, which is the predominant binary mixture involved in the vanadium recovery process. Thermal analysis, X-ray diffraction, scanning electron microscope and energy dispersive spectrometry were used to characterize the solid-state reaction of the samples. The extent of the solid reaction was derived using the preliminary quantitative phase analysis of the X-ray diffractograms. The results indicate that the solid reaction of CaO-V2O5 mixture is significantly influenced by the reaction temperature and CaO/V2O5 mole ratio. The transformation of calcium vanadates goes through a step-by-step reaction of CaO-V2O5, CaO-CaV2O6, and CaO-Ca2V2O7 depending on the CaO/V2O5 mole ratio. The kinetic data of the solid reaction of CaO-V2O5 (1:1) mixture was found to follow second order reaction model. The activation energy (Eα) and the pre-exponential factor (A) were determined to be 145.38 kJ/mol, and 3.67×108 min-1, respectively.
Research Article
Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al-Mg joints
Dong Wu, Wen-ya Li, Yan-jun Gao, Jun Yang, Quan Wen, Nektarios Vidakis, and  Achillefs Vairis
, Available online 9 July 2020, https://doi.org/10.1007/s12613-020-2134-9
Abstract:
In this study, the butt welds of 4 mm thick 5A06 aluminum alloy plates were produced by the developed adjustable-gap bobbin tool friction stir welding at three welding speeds of 200, 300, 400 mm/min. The microstructure was studied by using an optical microscope and electron backscatter diffraction (EBSD). Tensile tests and microhardness measurements were performed to identify the effect of welding speed on the joint mechanical properties. It is revealed that sound joints could be produced at a welding speed of 200 mm/min while voids are present at different positions of the joints as the welding speed increases. The EBSD result shows that the grain size, high angle grain boundaries (HAGBs) and density of geometrically-necessary dislocations (GNDs) in different regions of the joint vary depending on the recovery and recrystallization behavior. Specific attention was given to the relationship between the local microstructure and mechanical properties. Microhardness measurements show that the average hardness of the SZ is higher than that of the base material, which is almost not affected by the welding speed. The tensile strength of the joint decrease with increasing the welding speed, and the maximal strength efficiency reaches 99%.
Research Article
Recovery and regeneration of LiFePO4 from spent lithium ion batteries via a novel pretreating process
Cheng Yang, Jia-liang Zhang, Qian-kun Jing, Yu-bo Liu, Yong-qiang Chen, and  Cheng-yan Wang
, Available online 9 July 2020, https://doi.org/10.1007/s12613-020-2137-6
Abstract:
Recently, the recycling of spent LiFePO4 batteries has received extensive attention due to their environmental impact and economic benefit. In the pretreating process of spent LiFePO4 batteries, the separation of the active materials and the current collectors determines the difficulty of recovery process and the quality of product. In this work, a facile and efficient pretreating process is first proposed. After only freezing the electrode pieces and immersing it in boiling water, LiFePO4 materials have been basically peeled from Al foil. Then, after roasting in an inert atmosphere and sieving, all of the cathode and anode active materials were separated from Al and Cu foils easily and efficiently. The active materials were subjected to acid leaching and the leaching solution further prepared FePO4 and Li2CO3. Finally, the battery-grade FePO4·and Li2CO3 were used to re-synthesize LiFePO4/C via the carbon thermal reduction method. Re-synthesized LiFePO4/C cathode exhibits good electrochemical performance, which satisfies the requirement for middle-end LiFePO4 batteries. The whole process is found to be environmental and have great potential for industrial-scale recycling of spent lithium-ion batteries.
Research Article
Extraction of copper from copper bearing biotite by ultrasonic-assisted leaching
Bao-qiang Yu, Jue Kou, Chun-bao Sun, and  Yi Xing
, Available online 5 July 2020, https://doi.org/10.1007/s12613-020-2132-y
Abstract:
Copper bearing biotite is a typical refractory copper mineral on the surface of Zambian copper belt. Aiming to treat this kind of copper oxide ore with a more effective method, ultrasonic-assisted acid leaching was conducted in this paper. Compared with regular acid leaching, ultrasound could reduce leaching time from 120 min to 40 min, and sulfuric acid concentration could be reduced from 0.5 mol•L-1 to 0.3 mol•L-1. Besides, leaching temperature could be reduced from 75℃ to 45℃ at same copper leaching rate of 78%. Mechanism analysis indicates that ultrasonic wave can cause delamination of copper bearing biotite and increase the specific surface area from 0.55 m2•g-1 to 1.67 m2•g-1. The results indicate that copper extraction from copper bearing biotite by ultrasonic-assisted acid leaching is more effective than regular acid leaching. This study proposes a promising method for recycling valuable metals from phyllosilicate minerals.
Research Article
Fine Structure Characterization of Explosively Welded GH3535/316H Bimetallic Plate Interface
Jia Xiao, Ming Li, Li Jiang, De-jun Wang, Xiang-Xi Ye, Jian-ping Liang, Ze-zhong Chen, Na-xiu Wang, and  Zhi-jun Li
, Available online 26 June 2020, https://doi.org/10.1007/s12613-020-2128-7
Abstract:
To provide one more cost-effective structural materials for the ultra-high temperature molten salt thermal storage systems, the explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates in the present work. The microstructures of the bonding interfaces have been extensively investigated by scanning electron microscope, energy dispersive spectrometer, and electron probe micro-analyzer. It was discovered that the bonding interfaces possess the periodic wavy morphology and are adorned by peninsula- or island-like transition zones. At higher magnification, matrix recrystallization region, fine grain region, columnar grain region, equiaxed grain region, and shrinkage porosity can be observed in the transition zones and the surrounding area. The analysis of electron backscattered diffraction demonstrated that the strain in the recrystallization region of the GH3535 matrix and transition zone is lower than the substrate. Strain concentration occurred at the interface and the solidification defects in the transition zone. The dislocation substructure in 316H near the interface was characterized by the electron channeling contrast imaging. The results showed that a lot of dislocations network was formed in the grains of 316H. Microhardness tests showed that the micro-hardness decreased as the distance from the welding interface increased, and the lowest hardness value was inside the transition zone.
Research Article
Synthesis and characterization of ceria nanoparticles by complex-precipitation route
Yan-ping Li, Xue Bian, Yang Liu, Wen-yuan Wu, and  Gao-feng Fu
, Available online 24 June 2020, https://doi.org/10.1007/s12613-020-2126-9
Abstract:
Ceria (CeO2) nanoparticles have been successfully synthesized via a simple complex-precipitation route, which employs cerium chloride as cerium source and citric acid as precipitant. The elemental analysis results of carbon, hydrogen, oxygen and cerium in the precursors were calculated, and the results revealed that the precursors were composed of Ce (OH)3, [Ce(H2Cit)3] or [CeCit]. X-ray diffraction (XRD) analysis showed all ceria nanoparticles prepared to be face centered cubic structure. As n value was 0.25 and pH value was 5.5, the specific surface area of the sample reached the maximum value of 83.17 m2/g. Ceria nanoparticles were observed by scanning electron microscope (SEM). Selected electron diffraction patterns of some samples were obtained by transmission electron microscope (TEM), and the crystal plane spacing of each low-exponential crystal plane was calculated. The UV-vis transmittance curve shows that it has the ability to absorb ultraviolet light and pass through visible light. Among all samples, the minimum of the average transmittance of UVA (TUVA) is 4.42%, and the minimum of the average transmittance of UVB (TUVB) is 1.56%.
Research Article
Electrochemically functionalized graphene as an anti-corrosion reinforcement in Cu matrix composite thin films
Akhya kumar Behera, Amlan Das, Sanjeev Das, and  Archana Mallik
, Available online 24 June 2020, https://doi.org/10.1007/s12613-020-2124-y
Abstract:
In this article, Cu-Gr composite thin films are prepared by electrodeposition route using in-house synthesized graphene sheets. Graphene sheets are synthesized by the electrochemical exfoliation route using 1M HClO4 acid as electrolyte. Graphene sheets have been confirmed by XRD, FTIR, FESEM and TEM microscopy. The (002) plane of graphene sheets are observed at 2θ of 25.66⁰. The (002) plane confirms the crystal structure of carbon peaks. The stretching vibration of C=C bond at a wavelength of 1577 cm-1 and other functional groups of carboxyl and epoxide groups have been observed from FTIR. TEM microscopy confirms the transparent structure of graphene sheets. The prepared graphene sheets were used as reinforcement in concentration of 0.1 g/L and 0.3 g/L with a copper matrix to synthesize Cu-Gr composite. The prepared composite thin films have been characterized by XRD, SEM and EDS for morphological and analytical study. The presence of graphene sheets in Cu-Gr composite was confirmed by EDS analysis. The prepared Cu-Gr nanocomposite thin film shows higher corrosion resistance as compared to pure copper thin films in 3.5% NaCl as confirmed by Tafel plots. EIS also compliments the above results, which shows that 0.3 g/L composite film has highest film resistance.
Research Article
Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching
Sheng-hua Yin, Wei Chen, and  I.M.S.K. Ilankoon
, Available online 24 June 2020, https://doi.org/10.1007/s12613-020-2125-x
Abstract:
In order to obtain better bioleaching efficiency, bacterial community dynamics and copper leaching with applying forced aeration were investigated during low-grade copper sulphide bioleaching. Results illustrated appropriate aeration yielded improved bacteria concentrations and enhanced leaching efficiencies. The highest bacteria concentration and Cu2+ concentration after 14-day leaching were 7.61×107 cells•mL-1 and 704.9 mg•L-1, respectively, when aeration duration was 4 h•d-1. The attached bacteria played a significant role during bioleaching from day 1 to day 7. However, free bacteria dominated the bioleaching processes from day 8 to day 14. This is mainly caused by the formation of passivation layer through Fe3+ hydrolysis along with bioleaching, which inhibited the contact between attached bacteria and ore. Meanwhile, 16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidanson on bioleaching process. The results demonstrate the importance of free and attached bacteria in bioleaching.
Research Article
Microstructure evolution and mechanical properties of Mg-9Al-1Si-1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures
Xiang-peng Zhang, Hong-xia Wang, Li-ping Bian, Shao-xiong Zhang, Yong-peng Zhuang, Wei-li Cheng, and  Wei Liang
, Available online 21 June 2020, https://doi.org/10.1007/s12613-020-2123-z
Abstract:
In this study, Mg-9Al-1Si-1SiC (wt%) composites were processed by multi-pass equal-channel angular pressing (ECAP) at various temperatures, and the microstructure evolution and strengthening mechanism were explored. The results indicate that the as-cast microstructure was composed of an α-Mg matrix, discontinuous Mg17Al12 phase, and Chinese script-shaped Mg2Si phase. After solution treatment, almost all of the Mg17Al12 phases are dissolved into the matrix, while the Mg2Si phases are not. The subsequent multi-pass ECAP at different temperatures results in more complete dynamic recrystallization and uniform distribution of Mg17Al12 precipitates when compared with the multi-pass ECAP at a constant temperature. A large number of precipitates can effectively improve the nucleation ratio of recrystallization through a particle-stimulated nucleation mechanism. In addition, the nano-scale SiC particles are mainly distributed at grain boundaries, which can effectively prevent dislocation movement. The excellent comprehensive mechanical properties are mainly attributed to grain boundary strengthening and Orowan strengthening.
Research Article
Hydrothermal synthesis of Zn-Mg based layered double hydroxide coating over copper for its corrosion prevention in both chloride and hydroxide media
Nikhil, Gopal Ji, and  Rajiv Prakash
, Available online 21 June 2020, https://doi.org/10.1007/s12613-020-2122-0
Abstract:
Layered double hydroxides (LDHs) can be very interesting materials in corrosion inhibition applications as LDHs stops the corrosive elements by its ability of double layer formation and locking them between its layers. In this work, Zn-Mg based LDHs are grown over copper substrate by hydrothermal method. Two types of Zn-Mg based LDHs have been prepared based on hydrothermal reaction time. Both LDHs have been characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, high resolution scanning electron microscopy, energy dispersive X-ray analysis, atomic force microscopy and X-ray diffraction patterns. The results show that LDHs are successfully grown on copper; however, they are found different in terms of thickness and structural configuration. Corrosion testing of LDHs has been executed both in 0.1 M NaCl and 0.1 M NaOH by ac impedance measurements and Tafel polarization curves. The results show that L48 gives more than 90% protection to copper, which is higher than protection provided by L24. However, it is evident that both LDH (L24 and L48) is more effective in NaCl, in terms of reduction of corrosion. This information indicates that LDH is more efficient to exchange Cl- ions than OH- ions.
Research Article
Rapid Removal of the Copper Impurity from Bismuth-Copper Alloy Melts via Super-Gravity Separation
Xiao-chun Wen, Lei Guo, Qi-peng Bao, and  Zhan-cheng Guo
, Available online 17 June 2020, https://doi.org/10.1007/s12613-020-2118-9
Abstract:
To rapidly remove the copper impurity from bismuth-copper alloy melts, a green method of super-gravity separation was investigated, which has the characteristics of enhancing the filtration process of bismuth and copper phases. In this study, the influence of super-gravity on the removal of copper impurity from bismuth-copper alloy melts was discussed. After super-gravity separation, the liquid bismuth-rich phases were mainly filtered into the lower crucible, while most of the fine copper phases were remained in the opposite direction. With optimized conditions of T = 280℃, G = 450, and t = 200 s, the purity of the filtered bismuth phase exceeded 99.7wt%, and the mass proportion of the separated bismuth of Bi-2wt%Cu and Bi-10wt%Cu alloys reached 96.27wt% and 85.71wt% respectively, which indicated the little loss of bismuth in the residual. Simultaneously, the removal rate of copper impurity went to 88.0% and 97.8%, respectively. Furthermore, the separation process could be completed rapidly, environmentally friendly and efficiently.
Research Article
A Pathway to Improve the Microstructural Features and Mechanical Properties of the DP590 Advanced High Strength Steel Welds
Arian Ghandi, Morteza Shamanian, Mohamad Reza Salmani, and  Jalal Kangazian
, Available online 17 June 2020, https://doi.org/10.1007/s12613-020-2117-x
Abstract:
Effect of welding current mode in resistance spot welding process (RSW) on the microstructure and mechanical properties of the advanced high strength steel dual phase 590 (DP590) sheets have been investigated. It were found that fine martensitic structure was formed in the weld zone of the sample welded by single-pulse mode, while the microstructure in the heat-affected zone consists of a very fine martensitic microstructure and rough ferrite. However, using secondary pulse mode has led to the formation of tempered Martensite in the weld zone. The maximum load and the energy absorption to failure in the samples employing the secondary pulse cycle were higher, as compared to the sample employing the single pulse mode. Based on the fractography results, using the secondary pulse mode could significantly change the mode of failure upon shear tension testing. Therefore, the obtained results are some evidence that shows the use of secondary pulse mode can improve the microstructural feature and mechanical properties of the DP590 advanced high strength steel welds.
Research Article
Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride
Liu-ye Sun, Bo-rui Liu, Tong Wu, Guan-ge Wang, Qing Huang, Yue-feng Su, and  Wu Feng
, Available online 10 June 2020, https://doi.org/10.1007/s12613-020-2115-z
Abstract:
A reductant counts for much in the hydrometallurgical recycling of valuable metals from spent lithium-ion batteries (LIBs). There is limited information about SnCl2 as a reductant with organic acid (maleic acid) to recover value metals from spent LiCoO2 material. The leaching efficiencies were 98.67% and 97.59% for Li and Co with 1 mol L-1 of maleic acid and 0.3 mol L-1 of SnCl2 at 60°C and 40 min. And the kinetics and thermodynamics of the leaching process were inquired in the article to study the mechanism of leaching process clearly. According to the comparison of H2O2 on the leaching efficiency, optimal leaching parameters and the activation energy, it is feasible to replace H2O2 with SnCl2 as a leaching reducer in the leaching process. In addition, when SnCl2 is used in the acid-leaching process, Sn residue in leachate may has a positive effect on the re-synthesis of nickel-rich cathode materials. Therefore, the present study can provide a new direction for reductants selection for the hydrometallurgical recovery of valuable metals from spent LIBs
Research Article
Microstructure evolution and thermal conductivity of the diamond/Al composite during thermal cycling
Ping-ping Wang, Guo-qin Chen, Wen-jun Li, Hui Li, Bo-yu Ju, Murid Hussain, Wen-shu Yang, and  Gao-hui Wu
, Available online 10 June 2020, https://doi.org/10.1007/s12613-020-2114-0
Abstract:
The microstructure evolution and performance of Diamond/Al composites during thermal cycling, which is important for their wide application, has been rarely investigated. In the present work, the thermal stability of Diamond/Al composite during thermal cycling up to 200 cycles has been explored: thermal conductivity of the composites was measured, and SEM observation of the marked-out area of the same sample was carried out to achieve quasi-in-situ observation. The interface between (100) plane of diamond and Al matrix was well bonded with zigzag morphology and extensive needle-like Al4C3 phases. However, the interfacial bonding between (111) plane of diamond and Al matrix was rather weak, which was debonded during thermal cycling. The debonding length was initially increased rapidly within the initial 100 cycles, which was then increased slowly in the following 100 cycles. The thermal conductivity of the Diamond/Al composite was primarily decreased very abruptly within initial 20 cycles, increased afterward, and then further decreased monotonously with the increase of thermal cycles. The decreased thermal conductivity of the Al matrix and corresponding thermal stress concentration at the interface caused by the thermal mismatch stress is suggested as the main factor especially in the initial period rather than the interfacial debonding.
Research Article
Characterization of MCrAlY/nano-Al2O3 nanocomposite powder produced by high-energy mechanical-milling as feedstock for HVOF spraying deposition
Farzin Ghadami, A. Sabour Rouh Aghdam, and  Soheil Ghadami
, Available online 3 June 2020, https://doi.org/10.1007/s12613-020-2113-1
Abstract:
In this study, Al2O3 nanoparticles, as well as MCrAlY/nano-Al2O3 nanocomposite powder were produced using a high-energy ball-milling process. In addition, the MCrAlY/nano-Al2O3 coating was deposited by selecting an optimum nanocomposite powder as feedstock using high-velocity oxy-fuel (HVOF) thermal spraying technique. The morphological and microstructural examinations of Al2O3 nanoparticles, as well as the commercial MCrAlY and MCrAlY/nano-Al2O3 nanocomposite powders, were investigated using X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FESEM) equipped with electron dispersed spectroscopy (EDS) analysis and transmission electron microscope (TEM). The structural investigations and Williamson-Hall results demonstrated that the ball-milled Al2O3 powder after 48 h has the smallest crystallite size and the highest amount of lattice strain compared to all other as-received and ball-milled Al2O3 owing to its optimal nanocrystalline structure. Besides, in the case of developing MCrAlY/nano-Al2O3 nanocomposite powder, with increasing mechanical-milling duration, the particle size of the nanocomposite powders was decreased.
Research Article
Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5
K. Chandrakanta, Rasmita Jena, Pikesh Pal, Md. Faruck Abdullah, Somdatta D. Kaushik, and  Anil K. Singh
, Available online 31 May 2020, https://doi.org/10.1007/s12613-020-2110-4
Abstract:
Cobalt modified brownmillerite KBiFe2O5 [KBiFe2(1-x)Co2xO5 (x= 0, 0.05)] polycrystalline is synthesized following solid-state reaction route. Rietveld refinement of X-ray diffraction (XRD) data reveals the phase purity of KBiFe2O5 (KBFO) and KBiFe1.9Co0.1O5 (KBFCO). The optical band gap energy (Eg) of KBFO is observed to be decrease from 1.59 eV to 1.51 eV by Co substitution. The decrease in band gap attributes to the tilting in the Fe-O tetrahedral structure of KBFCO. The observed room temperature Raman peaks of KBFCO are shifted by 3 cm-1 towards lower wavenumber in comparison with KBFO Raman peaks. The shifting of Raman active modes can be attributed to the change in the bond angles and bond lengths of Fe-O tetrahedral and modification in oxygen deficiency in KBFO due to Co doping. The frequency-dependent dielectric constant and loss of KBFCO also decrease with respect to KBFO at room temperature, which is a consequence of the reduction in oxygen migration and modification in vibrational modes present in the sample.
Research Article
Bonding of compound casted Ti/Al bimetal by heat treatment
Mohsen Fadaeinia and  Ramin Raiszadeh
, Available online 27 May 2020, https://doi.org/10.1007/s12613-020-2107-z
Abstract:
The mechanism of the formation of bonding between compound cast Al/Ti bimetal during a heat treatment regime is investigated by casting commercially pure Al melt on a Ti bar in a steel tube and heat treating the compound cast Ti/Al bimetal for different periods of time, after the Al melt was solidified. No bonding was observed between the two metals after the initial casting. This was attributed to the presence of oxide films on the liquid Al and solid Ti alloys and the trapped atmosphere between them. The effect of these layers in preventing the formation of bonding was eliminated after heat treating the cast part at 973 K (700 oC) for at least 15 min and the metals started to bond with each other. A detailed mechanism for this bonding is presented in this paper.
Research Article
Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings
Alexander M. Klyushnikov, Rosa I. Gulyaeva, Evgeniy N. Selivanov, and  Sergey M. Pikalov
, Available online 27 May 2020, https://doi.org/10.1007/s12613-020-2109-x
Abstract:
Abstract: X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry, differential scanning calorimetry and mass spectrometry have been used to study the products of nickel-containing pyrrhotite tailings oxidation by the oxygen in the air. The kinetic triplets of oxidation, such as activation energy (Ea), pre-exponential factor (A) and reaction model (f(α)) being a function of the conversion degree (α), were adjusted by the regression analysis. In case of a two-stage process representation, the first step proceeds under autocatalysis control and ends at α = 0.42. The kinetic triplet of the first step can be presented as Ea = 262.2 kJ/mol, lgA = 14.53 s-1, f(α) = (1 – α)4.11(1 + 1.51·10–4α). For the second step, the process is controlled by the two-dimensional diffusion of the reactants in the layer of oxidation products. The kinetic triplet of the second step: Еa = 215.0 kJ/mol, lgA = 10.28 s-1, f(α) = (–ln(1 – α))–1. The obtained empirical formulae for the rate of pyrrhotite tailings oxidation reliably describe the macro-mechanism of the process and can be used to design automatization systems for roasting these materials.
Research Article
The sliding wear behaviour of Fe/316L/430-Ti(C,N) composites prepared by SPS and subsequent heat treatment
Dao-ying Chen, Ying Liu, Ren-quan Wang, and  Jin-wen Ye
, Available online 27 May 2020, https://doi.org/10.1007/s12613-020-2108-y
Abstract:
In this study, a family of novel steel-Ti(C,N) composites were fabricated by spark plasma sintering (SPS) method and subsequent heat treatment. The hardness, indentation fracture resistance, and wear behaviour of the steel-Ti(C,N) composites were compared with that of unreinforced samples and their potentials were assessed by traditional cermet/hardmetal systems. The results show that with the addition of 20wt% Ti(C,N), wear rates of the newly examined composites are reduced by about 2 to 4 times and comparable to that of cermets and hardmetals. The martensitic transformation of steel matrix and the formation of in-situ carbides induced by heat treatment meliorated the wear resistance. Although excessive in-situ carbide improves the hardness, the low IFR (Indentation Fracture Resistance) value results in brittle fracture, which in turn results in poor wear property. The operative wear mechanisms were studied. This study provides a practical and cost-effective way to prepare steel-Ti(C,N) composites as potential wear-resistant materials.
Research Article
Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore
Hamed Gholami, Bahram Rezai, Ahmad Hassanzadeh, Akbar Mehdilo, and  Mohammadreza Yarahmadi
, Available online 24 May 2020, https://doi.org/10.1007/s12613-020-2106-0
Abstract:
The present work initially studies the kinetics of microwave-assisted grinding and flotation in a porphyry copper deposit. The kinetics tests were carried out on the untreated and microwave irradiated samples by varying the exposure time from 15-150 sec. Optical microscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy were used for determining the mineral liberation, particle surface properties and mineralogical analyses. Results disclosed that the ore’s breakage rate constant monotonically increased by increasing the exposure time particularly for the coarsest fraction size (400 µm) owing to the creation of thermal stress fractures alongside grain boundaries. Exceeded irradiation time (>60 sec) led to the creation of oxidized and porous surfaces along with a dramatic change of particle morphologies resulting in a substantial reduction of both chalcopyrite and pyrite’s flotation rate constants and ultimate recoveries. We concluded that MW-pretreated copper ore was ground faster than untreated one but their floatabilities were somewhat similar.
Research Article
Microemulsion leaching of vanadium from sodium roasted vanadium slag by fusion of leaching and extraction processes
Yun Guo, Hong-yi Li, Yi-heng Yuan, Jie Huang, Jiang Diao, Gang Li, and  Bing Xie
, Available online 24 May 2020, https://doi.org/10.1007/s12613-020-2105-1
Abstract:
In this work, the fusion of leaching and purification steps is realized by directly using microemulsion as the leaching agent. The DEHPA/n-heptane/NaOH microemulsion system has been established to directly leach vanadates from sodium roasted vanadium slag. The effect of leaching arguments on the leaching efficiency is investigated, including the molar ratio of H2O/NaDEHP (W), the DEHPA concentration of, solid/liquid ratio, stirring time, and leaching temperature. In optimal situations, the vanadium leaching efficiency could attain 79.57%. Both the XRD characterization of the leaching residue and the Raman spectrum of the microemulsion before and after leaching demonstrate the successful entrance of vanadates from sodium roasted vanadium slag into the microemulsion. The proposed method has realized the leaching and purification of vanadates in one step, which significantly reduces the production cost and environmental pollution. It affords new ways of thinking about the greener recovery of valuable metals from solid resources.
Research Article
Reduction of NOx emission based on optimizing the proportions of mill scale and coke breeze during sintering process
Zhi-gang Que, Xian-bin Ai, and  Sheng-li Wu
, Available online 21 May 2020, https://doi.org/10.1007/s12613-020-2103-3
Abstract:
How to cost-effectively reduce NOx emission of iron ore sintering process is a new challenge for iron and steel industry at present. The effects of proportion of mill scale and coke breeze on the NOx emission, strength of sinter and sinter indexes were studied by combustion tests and sinter pot tests. Results showed that the fuel-N’s conversion rate decreased with increasing of the proportions of mill scale. Because NO was reduced to N2 by Fe3O4, FeO and Fe in mill scale. The strength of sinter reached a highest value at 8.0 wt% mill scale due to the formation of low melting point minerals. Meanwhile, the fuel-N’s conversion rate slightly increased and total NOx emission significantly decreased with the proportions of coke breeze increased. Because CO formation and contents of N element in sintered mixture decreased. However, the strength of sinter was also decreased since the decreasing of the melting minerals. In addition, results of sinter pot tests indicated that NOx emission obviousely decreased and sinter indexes have good performances when the proportions of mill scale and coke breeze were 8.0 wt% and 3.70 wt% in sintered mixture.
Research Article
Adsorption properties of V(IV) on the resin-activated carbon composite electrodes in capacitive deionization
Xiao-man Tian, Shen-xu Bao, and  Yi-min Zhang
, Available online 17 May 2020, https://doi.org/10.1007/s12613-020-2100-6
Abstract:
The composite electrodes prepared by cation exchange resins and activated carbon (AC) were used to adsorb V(IV) in capacitive deionization (CDI). The electrode made of middle resin size (D860/AC M) has the largest specific surface area and mesoporous content than other two composite electrodes. Electrochemical analysis showed that D860/AC M presents higher specific capacitance and electrical double layer capacitor, and significantly lower internal diffusion impedance, thus it exhibits the highest adsorption capacity and rate for V(IV) among three electrodes. The intra-particle diffusion model fits well the initial adsorption stage, while the liquid film diffusion model is more suitable for the fitting at the later stage. The pseudo-second-order kinetic model is fit for the entire adsorption process. The adsorption of V(IV) on the composite electrode follows the Freundlich isotherm, and thermodynamic analysis indicates that this is an exothermic process with entropy reduction and the electric field force plays a dominant role in the CDI process. This work is conducive to peep at the ions adsorption behaviors and mechanisms on the composite electrodes in CDI.
Research Article
Fabrication and characterization of GNPs and CNTs reinforced Al7075 matrix composites through stir casting process
Siavash Imanian Ghazanlou and  Beitallah Eghbali
, Available online 17 May 2020, https://doi.org/10.1007/s12613-020-2101-5
Abstract:
In the present research, effect of graphene nanoplates (GNPs) and carbon nanotubes (CNTs) addition into the Al7075 matrix through the stir casting method on the microstructure and mechanical properties of fabricated composites was investigated. XRD results represented that by addition of reinforcements into Al7075, the dominant crystal orientation changed from a weak (002) to a strong (111). By increasing of reinforcements, the fraction of porosity increased and among the two mentioned reinforcements, addition of GNPs in to the Al7075 matrix led to create a higher fraction of porosity. Addition of reinforcements into Al7075 matrix owing to agglomeration of reinforcements and formation of porosities did not change the experimental Yield strength (YS) considerably. Theoretical calculations to determine the contributions of strengthening mechanisms in the enhancement of YS revealed that by addition of reinforcements, the grain size of matrix did not decrease, so Hall-Petch was not activated. By addition of self-lubricant GNPs and CNTs into the matrix, the wear rate values decreased and the lowest friction coefficient and the highest wear resistance belonged to Al7075/0.53 wt. % CNTs. In Al7075/GNPs, the dominant mechanisms were adhesion and delamination and a little abrasive occurred.
Research Article
Solid particle erosion studies on thermally deposited alumina–titania coatings over aluminium alloy
Chellaganesh Durai, M. Adam Khan, J. T. Winowlin Jappes, Nouby M. Ghazaly, and  P. Madindwa Mashinini
, Available online 17 May 2020, https://doi.org/10.1007/s12613-020-2099-8
Abstract:
Thermal barrier coatings are widely used for surface modifications. Surface modifications are performed to enhance the surface properties of the material and protect the same from surface degradation such as erosion and corrosion. To increase the wear resistance, the ceramic based coatings are highly recommended in the industrial sector. In this paper, alumina-titania ceramic powder is deposited on the aluminium alloy using atmospheric plasma spray (APS) technique. Experimental investigations are performed to study the material behavior and its erosion rate. Solid particle erosion studies are performed by varying particle velocity and particle flow rate. The angle impingement and stand-of-distance are maintained constant for comparison. The behavior of base metal has clinging effect and the mass change found negative at a maximum particle flow rate of 4g/min. At the same process condition coated sample has lost his life and reached a maximum erosion rate of 0.052 (Δg/g). From the solid particle erosion studies, it has been confirmed that the behavior of as cast aluminium alloy has severe surface damage with erodent reinforcement when compared to coated samples. The influence of particle velocity and the particle flow rate were analyzed. The influence of input process parameter was also identified.
Research Article
Insights into mineralogical characteristics of typical copper sulfide tailings using automated mineral liberation analysis: A case study from the Chambishi copper mine
Xiao-liang Zhang, Jue Kou, Chun-bao Sun, Rui-yang Zhang, Min Su, and  Shuo-fu Li
, Available online 13 May 2020, https://doi.org/10.1007/s12613-020-2093-1
Abstract:
As ore grades constantly decline, more copper tailings that still contain a considerable amount of unrecovered copper are expected to be produced as a byproduct of froth flotation. This research reveals the occurrence mechanism of copper minerals in a typical copper sulfide tailing using quantitative mineral liberation analysis (MLA) integrated with scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The results show that copper minerals are highly disseminated within coarse gangue particles, and more than 90% of them are accumulated in the size fractions less than 106 μm. The predominant copper-bearing mineral is chalcopyrite, which is closely intergrown with orthoclase and muscovite rather than quartz. The flotation tailing sample still contains 3.28wt% liberated chalcopyrite and 3.13wt% liberated bornite because of their extremely fine granularity. The SEM-EDS analysis further demonstrate that copper minerals mainly occurred as fine dispersed and fully enclosed structures in gangue minerals. The information obtained from this research could offer useful references for recovering residual copper from flotation tailings.
Research Article
Preparation and photocatalytic property of Fe2O3/ZnO composite with superhydrophobicity
Muntadher I. Rahmah, Raad S. Sabry, and  Wisam J. Aziz
, Available online 13 May 2020, https://doi.org/10.1007/s12613-020-2096-y
Abstract:
A facile approach was developed to construct Fe2O3-modified ZnO micro/nanostructures with excellent superhydrophobicity and photocatalytic activity. The impacts of stearic acid (SA) and Fe2O3-modified on the morphology, water contact angle (WCA) and photocatalytic degradation were investigated. The superhydrophobic results showed increased of WCA from 144 ± 2° to 154 ± 2° when SA weight increase from 5 mg to 20 mg due to formation of hierarchical or rough structure. Furthermore, Fe2O3-modified ZnO micro/nanostructures surface before and after treatment with SA (20 mg) chosen to evaluate the photocatalytic of Methylene blue (MB) dye by supporting visible-light. The results showed degradation of MB after 80 min of irradiation with photodegradation efficiency 91.5% for superhydrophobic state and 92% for the hydrophilic state. This improvement in photocatalytic activity at both states may be attributable to an increase of surface area and improve charge carriers separation.
Research Article
Effect of chromium on microstructure and the hot ductility of Nb microalloyed steel
Yang Liu, Yan-hui Sun, and  Hao-tian Wu
, Available online 13 May 2020, https://doi.org/10.1007/s12613-020-2092-2
Abstract:
The effects of chromium on γ-austenite to α-ferrite phase transformation in Nb Microalloyed steel was observed using ultra high-temperature confocal laser scanning microscopy. It is indicated that the starting temperature of the γ→α phase transformation decreases with increasing the Cr content. The hot ductility of Nb microalloyed steel is improved by adding 0.12wt% Cr. Chromium atoms inhibit the diffusion of carbon atoms, which leads to the reduction of grain boundary ferrite thickness. The proportion of high angle grain boundaries is increased by adding chromium. In particular, the proportion is up to 48.7% when the Cr content is 0.12wt%.The high angle grain boundaries hinder the crack propagation and improve the ductility of Nb microalloyed steel.
Research Article
Comprehensive analysis of pulsed plasma nitriding pre-conditions on fatigue behavior of AISI 304 austenitic stainless steel
Okan Unal, Erfan Maleki, and  Remzi Varol
, Available online 13 May 2020, https://doi.org/10.1007/s12613-020-2097-x
Abstract:
In this study, the aim is to draw the exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions. The treatment is applied to AISI 304 austenitic stainless steel at different temperature and durations. The nitrided depth increases with increasing the process temperature and duration. Remarkable increase is observed on the nitrided depth for the conditions of 4750C-8h and 5500C-4h. The austenite structure is transformed into metastable nitrogen oversaturated S-phase for the lower temperature of plasma nitriding. S-phase is converted to CrN precipitation within the conditions of 4750C-8h and 5500C-4h. Plasma nitriding achieves the surface hardness and fatigue limit increase regardless of the condition. The best performance for surface hardness and fatigue limit is obtained with 5500C-4h due to the existence of CrN precipitation.
Research Article
Effects of cellulose nanocrystals on improving the acid resistance of cementitious composites in mining
Lin-ping Wu, Guang-ping Huang, Chao-shi Hu, and  Wei Victor Liu
, Available online 9 May 2020, https://doi.org/10.1007/s12613-020-2087-z
Abstract:
Acid mine drainage has been an important threat to cementitious structures. To improve the acid resistance of cementitious composites used under acid mine drainage attack, this study is aimed at investigating the effect of cellulose nanocrystals (CNCs) on the acid resistance of cementitious composites. CNCs were added to the mortar mixtures as additives at cement volume ratios of 0.2%, 0.4%, 1% and 1.5%. After 28 days of standard curing, the samples were immersed in sulfuric acid with a pH of 2 for 75 days. The unconfined compressive strength (UCS) test, density, absorption and voids test and thermo-gravimetric analysis (TGA) were carried out to investigate the properties of CNC mixtures before sulfuric acid immersion. It was found that the addition of CNC reduced the volume of permeable voids and increased the hydration degree and mechanical strength. Changes in mass and length were monitored during immersion to evaluate the acid resistance of mixtures. The mixture with 0.4% CNC showed improved acid resistance due to the reduced mass change and length change after brushing.
Research Article
Highly Efficient Nanocatalyst Ni1Co9@graphene in Dehydrogen Process from Sodium Borohydride Hydrolysis
Juan Wang, Li-jun Yang, Xiao-chong Zhao, Pan Yang, Wei Cao, and  Qing-song Huang
, Available online 9 May 2020, https://doi.org/10.1007/s12613-020-2090-4
Abstract:
Bimetal materials derived from transition metals can be good catalysts in some reactions. When supporting on graphene (GP), those catalysts have a remarkable performance in hydrolysis of sodium borohydride. To obtain such catalysts easily and efficiently, herein, a simple thermal reduction strategy has been used to prepare NixCo10-x series bimetal catalysts. Among all of these catalysts, Ni1Co9 is the best catalysts in catalytic performance. The turnover frequency (TOF) related to the total atoms number within the bimetallic nanoparticles reaches 603.82 mLH2·mmolbimetal-1·min-1 at 303 K. Furthermore, graphene is introduced as supporting frame. In additon, Ni1Co9@Graphene (Ni1Co9@GP) makes a large surface area and high TOF, 25534 mLH2·mmolbimetal-1·min-1 at 303 K. The Ni1Co9@GP exhibits efficiently catalytic properties for H2 generation in an alkaline solution because of their high specific surface area. Kinetic studies a high kinetic isotope effect disclosed using D2O lead to the suggestion of an oxidative addition of a O-H bond of water in the rate-determining step.
Research Article
Investigation of dielectric relaxations and conduction mechanism in Aurivillius ceramic Bi5Ti3FeO15
Rasmita Jena, K. Chandrakanta, Pikesh Pal, Md. Faruck Abdullah, S. D. Kaushik, and  A. K. Singh
, Available online 9 May 2020, https://doi.org/10.1007/s12613-020-2091-3
Abstract:
Aurivillius Bi5Ti3FeO15 (BTFO) ceramic is synthesized by the generic solid-state reaction route. The room temperature X-ray diffraction (XRD) study confirms that the compound is having single-phase without any impurity. Surface morphology of the prepared sample ensures that the presence of microstructural grains with size around 0.2 to 2 µm is observed. Dielectric properties of sample are investigated as a function of frequency of about 100 Hz to 1 MHz at various temperatures (303 K ≤ T ≤ 773 K). The Nyquist plots of impedance data exhibit a semi-circular arc in high temperature region, which is explained by the equivalent electrical circuit (R1C1) (R2QC2). Our results indicate that resistance as well as capacitance of grain boundary is more prominent over the grains. Analysis of ac conductivity data is done by using Jonscher universal power law (σacdc+Aωn) which confirms that the conduction process is dominated by the hopping mechanism. The activation energies calculated for relaxation and conduction processes are very close to each other (0.32 eV to 0.53 eV) by which we conclude that the same type of charge carriers are involved in both the processes.
Research Article
Study on the shape of slab solidification end and its influence on the central-line segregation
Jie Li, Yan-hui Sun, Hang-hang An, and  Pei-yuan Ni
, Available online 9 May 2020, https://doi.org/10.1007/s12613-020-2089-x
Abstract:
A solidification model of a continuous casting slab with non-uniform cooling condition was established with the ProCAST software. The model was verified by the results of the nail shooting tests and the infrared temperature measurement equipment. It was found that the final solidification position was 220 to 440 mm away from the edge of the slab width for 200 mm × 2300 mm section based on the simulation results. In addition, four characteristic parameters were defined to evaluate the uniformity of the shape of slab solidification end. Then the effects of casting speed, superheat and secondary cooling strength on these four parameters were discussed. Moreover, the central-line segregation of slab produced with and without the soft reduction process were investigated. The results show that, the transverse flow of molten steel with low solid fraction had an important effect on the central-line segregation morphology under the soft reduction.
Research Article
Response of agglomeration and leaching behavior of copper oxides to chemical binders
Sheng-hua Yin, Lei-ming Wang, Xun Chen, and  Ai-xiang Wu
, Available online 24 April 2020, https://doi.org/10.1007/s12613-020-2081-5
Abstract:
The chemical binder is one of critical factors that affecting ore agglomeration behavior and leaching efficiency. In this study, the effect of types of binders and mass fraction of H2SO4 solution on curing, soaking and leaching behavior of agglomerations were conducted. The results showed that the Portland cement (3CaO·SiO2, 2CaO·SiO2, 3CaO·Al2O3) was the optional binder to obtain well-shape, stable structure of agglomeration. A higher extraction rate was reached using Portland cement instead of sodium silicate, gypsum and acid-proof cement. The excessive geometric mean size is not conducive to well-shaped agglomerations and desirable porosity. Relied on Computed Tomography (CT) and MATALB, the porosity of 2-D CT images in L1~L3 increased at least 4.5 % after acid leaching. Ore agglomerations started to be heavily destroyed and even disintegrate if sulfuric acid solution was higher than 30 g/L, it was caused by undesirable accumulation of reaction products and residuals.
Research Article
Efficient Metallization of Magnetite Concentrate by Reduction with Agave Bagasse as Source of Reducing Agents
Diana Cholico-González, Noemí Ortiz Lara, Mario Alberto Sánchez Miranda, Ricardo Morales Estrella, Ramiro Escudero García, and  Carlos Alberto León Patiño
, Available online 24 April 2020, https://doi.org/10.1007/s12613-020-2079-z
Abstract:
The reduction behavior and metallization degree of magnetite concentrate with agave bagasse were investigated in an inert atmosphere. The influence of temperature, biomass content and residence time on reduction experiments and metallization degree were investigated by X-ray diffraction and scanning electron microscopy. The results show advantages compared to other kinds of biomass, such as lower content of nitrogen, sulphur, and ash. X-ray diffraction analysis showed that an increase of temperature and biomass content result in higher metallization degree. At 1100°C for 30 minutes with 65:35 and 50:50 magnetite concentrate:agave bagasse ratios, complete metallization was achieved. These results demonstrate that agave bagasse promotes the efficient metallization of magnetite concentrate without external addition of reducing agent. Therefore, the use of this biomass is a technical suitable alternative to replace the fossil fuels in steelmaking process.
Research Article
Effect of multi-pass friction stir processing and Mg addition on microstructure and tensile properties of Al-1050 alloy
Shahin Arshadi Rastabi and  Masoud Mosallaee
, Available online 24 April 2020, https://doi.org/10.1007/s12613-020-2074-4
Abstract:
The effect of multiple passes of friction stir processing (FSP) and the addition of Mg powder on different parts of the microstrcuture processed including the stir zone (SZ), the heat-affected zone (HAZ), and the thermo-mechanically affected zone (TMAZ) were investigated. The results of the microstructural observations revealed that although the grain size of the SZ decreased in both the non-composite and composite samples, the grain size increased in the TMAZ and the HAZ of the non-composit sample with increasing the numer of FSP passes. Besides, the addition of Mg powder resulted in much more significant grain refinement. Moreover, increasing the number of the FSP passes resulted in a more uniform distribution of Al-Mg intermetallic compounds in the in-situ composite sample. The results of the tensile testing showed that the four- passes FSPed non-composite sample exhibited a higher elongation percentage with a ductile fracture compared with those of the base metal and the four-pass composite sample while lattermost sample exhibited a brittle fracture and a higher tensile strength value than the base metal and the four-pass FSPed non-composite sample. The fabrication of composite samples resulted in noticeable enhancement of hardness compared with the base metal and the non-composite FSPed samples.
Research Article
Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2-C electrocatalyst for MOR
Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Qing-feng Li, Shi-you Guan, and  Bing Li
, Available online 24 April 2020, https://doi.org/10.1007/s12613-020-2076-2
Abstract:
Pt/CeO2-C catalysts with CeO2 pre-calcined at 300~600 °C were synthesized by combining hydrothermal calcination and wet impregnation method. The effects of the pre-calcined CeO2 on the performance of Pt/CeO2-C catalysts for methanol oxidation have been investigated. The Pt/CeO2-C catalysts with pre-calcined CeO2 at 300~600 °C have shown an average particle size of 2.6-2.9 nm, and exhibited better methanol electro-oxidation catalysis activity than the commercial Pt/C catalyst. Specifically, the Pt/CeO2-C catalyst with pre-calcined CeO2 at 400 °C displayed the highest electrochemical surface area (ECSA) value at 68.14 m2 g−1Pt and If/Ib ratio at 1.26, which are far larger than that of the commercial Pt/C catalyst at 53.23 m2 g−1Pt and 0.79 respectively, implying the greatly enhanced CO tolerance performance.
Research Article
Electrochemical derusting in molten Na2CO3-K2CO3
Dong-yang Zhang, Xue Ma, Hong-wei Xie, Xiang Chen, Jia-kang Qu, Qiu-shi Song, and  Hua-yi Yin
, Available online 16 April 2020, https://doi.org/10.1007/s12613-020-2068-2
Abstract:
The formation of a rust layer on the surface of iron and steels accelerates their degradation and eventually causes the failure of materials. In addition to fabricating a protective layer or using a sacrificial anode, repairing or removing the rust layer is another way to reduce the corrosion rate and extend the lifespan of iron and steels. Herein, an electrochemical deoxidation approach is employed to repair the rust layer in molten Na2CO3-K2CO3. The rust consists of oxides which can be electrochemically reduced to metals/alloys, releasing oxide ions into the molten salt. The electrochemical method uses electrons to convert oxide to metal rather than remove the entire rust layer away. Due to the fluidity of the molten salt electrolyte, the electrochemical derusting approach is not constrained by the shape of the objects. The rusty layer of iron rods and screws was electrochemically converted to iron by molten salt electrolysis. Thus, the high-temperature molten salt electrolysis may be an effective way to metalize iron rust and be used for repairing cultural relics and healing the rust layers on other metals.
Research Article
Effect of TiB2 and Al3Ti on Microstructure, Mechanical Properties and Fracture Behaviour of Near Eutectic Al-12.6Si Alloy
Surajit Basak, Prosanta Biswas, Surajit Patra, Himadri Roy, and  Manas Kumar Mondal
, Available online 16 April 2020, https://doi.org/10.1007/s12613-020-2070-8
Abstract:
Near eutectic 12.6SiAl alloy has been developed with 0 wt%, 2 wt. %, 4 wt.% and 6 wt.% Al-5Ti-1B master alloy. Microstructural morphology, hardness, tensile strength, elongation and fracture behaviour of the alloys have been studied. The unmodified 12.6SiAl alloy has an irregular needle and platy eutectic silicon (ESi) and coarse polygonal primary silicon (PSi) particles in the matrix-like α-Al phase. The PSi, ESi and α-Al morphology and volume fraction have been changed due to the addition of Al-5Ti-1B master alloy. As an effect of microstructure modification, hardness, UTS and % elongation improved. Nano-sized in-situ Al3Ti particles and ex-situ TiB2 particles are the cause of microstructural modification. The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time. The Al-5Ti-1B modified alloys have a more ductile mode of fracture and dimples compared to the unmodified one.
Research Article
Semi-solid billet prepared by the direct semi-solid isothermal treatment of cold-rolled ZL104 aluminum alloy
Yong-fei Wang, Yi Guo, Sheng-dun Zhao, and  Xiao-guang Fan
, Available online 16 April 2020, https://doi.org/10.1007/s12613-020-2067-3
Abstract:
The direct semi-solid isothermal treatment (DSSIT) process is proposed to process the cold-rolled ZL104 aluminum alloy to manufacture the semi-solid billet. The influence of two process parameters (i.e. maintained temperature and duration time) on the microstructure and hardness of the semi-solid billet (ZL104 aluminum alloy) were experimentally examined. Results revealed that the average size of grains enlarged and the shape factor was improved with an elevation in the maintained temperature. The shape factor increased with the increase in the duration time while the average grain size enlarged when the duration time was prolonged from 5 to 20 min at 570 °C. The hardness of the studied aluminum alloy decreased due to the increase in the average size of grains with raising of either the maintained temperature or the duration time. The optimal maintained temperature was obtained as 570 °C while the duration time was found as 5 min for preparing the semi-solid ZL104 aluminum alloy. Under the optimal process parameters, the average size of the grain, the shape factor, and the hardness were obtained as 35.88 µm, 0.81 and 55.24 MPa, respectively. The coarsening rate constant in the Lifshitz-Slyozov-Wagner relationship at 570 °C was found at 1357.2 μm3/s.
Research Article
Fabrication and properties of silver-based composites reinforced with carbon-coated Ti3AlC2
Yong-fa Zhu, Wu-bian Tian, Dan-dan Wang, Heng Zhang, Jian-xiang Ding, Pei-gen Zhang, and  Zheng-ming Sun
, Available online 12 April 2020, https://doi.org/10.1007/s12613-020-2064-6
Abstract:
Ti3AlC2 reinforced Ag-based composites are used as sliding current collectors, electrical contacts and electrode materials, which shows remarkable performance. However, the interfacial reactions between Ag and Ti3AlC2 significantly deteriorate the electrical and thermal properties of the composite. To alleviate the interfacial reactions, carbon-coated Ti3AlC2 particles (C@Ti3AlC2) were fabricated as reinforcement. Ag-10wt.% C@Ti3AlC2 composites with carbon layer thickness of 50-200 nm were prepared. Compared with the uncoated Ag-Ti3AlC2 composite, Ag-C@Ti3AlC2 exhibits a better distribution of Ti3AlC2 particles. With the increase of carbon layer thickness, the Vickers hardness and relative density of Ag-C@Ti3AlC2 decline gradually. The lowest resistivity of Ag-C@Ti3AlC2 reaches 29.4×10-9 Ω·m with the carbon layer thickness of 150 nm, half of the Ag-Ti3AlC2 (66.7×10-9 Ω·m). The thermal conductivity of Ag-C@Ti3AlC2 reaches a maximum value of 135.5 W·m-1·K-1 with a 200-nm carbon coating (~1.8 times over that of the Ag-Ti3AlC2). These results indicate that carbon coating method is a feasible strategy to improve the performance of Ag-C@Ti3AlC2 composites.
Research Article

Sintering of monoclinic-SrAl2Si2Oceramics and their immobilization of Sr

Jie Luo, Xin Li, Fu-jie Zhang, Song Chen, and  Ding Ren
, Available online 3 April 2020, https://doi.org/10.1007/s12613-020-2056-6
Abstract:
Monoclinic SrAl2Si2O8 ceramics for the immobilization of Sr were prepared by a liquid-phase sintering method. The sintering temperature, mineral phase composition, microstructure, flexural strength, bulk density, and Sr ions leaching characteristic of SrAl2Si2O8 ceramics were investigated. A crystalline monoclinic-SrAl2Si2O8 phase was formed by liquid phase sintering at 1223 K. The introduction of four different flux agents (B2O3, CaO·2B2O3, SrO·2B2O3 and BaO·2B2O3) to the SrAl2Si2O8 ceramics not only reduced the densification temperature and decreased the volatilization of Sr during high-temperature sintering, but also impacted the mechanical properties of the ceramics. The product consistency tests showed that the leaching concentration of Sr ions in sample SAS-B with flux agents B2O3 was the lowest and the leaching concentration of Sr ions in sample SAS-B2B with flux agents BaO·2B2O3 was the highest. These results show that the leaching concentration of Sr ions depends largely on amorphous phase in the ceramics. Meanwhile, the formation of mineral analog ceramic containing Sr is an important factor to improve the immobilization of Sr.
Research Article
Comparative Characterization of Iridium Loading on Catalyst Assessment under Different Conditions
Zahra Amirsardari, Akram Dourani, Mohamad Ali Amirifar, Nooredin Ghadiri Massoom, Rahim Ehsani, and  Reza Ghanbarnejad
, Available online 3 April 2020, https://doi.org/10.1007/s12613-020-2058-4
Abstract:
To discuss the potential role of the iridium (Ir) nanoparticles loaded under conditions at atmospheric and high pressures, we have proceeded to prepare a series of catalysts with the same active phase, but different content of 10, 20, and 30 wt% on gamma alumina for the decomposition of hydrazine. Under atmospheric pressure, the performance of the catalyst was better when using 30 wt% of iridium nanoparticles with chelating agent with a more selectivity of about 27%. The increase of the reaction rate of 175 h-1 to 220 h-1 at the higher iridium loading (30 wt%) is due to a good dispersion of high number active phases rather than an agglomeration surface. On the other hand, as a satisfactory result of this investigation at high pressure, it was found that iridium catalysts with different weight percentages showed the same stability against crushing and activity with a characteristic velocity about 1300 m/s.
Research Article
Effect of organic binders in the activation and properties of indurated magnetite pellets
Cui Wang, Chen-yang Xu, Zheng-jian Liu, Yao-zu Wang, Li-ming Ma, and  Rong-rong Wang
, Available online 3 April 2020, https://doi.org/10.1007/s12613-020-2055-7
Abstract:
In the ironmaking process, adding organic binder replaces a portion of bentonite is a potential solution to improve the performance of the pellets. The interaction between the original bentonite (OB) and the organic binder was investigated. The results illustrate that the micro-morphology of the organic composite bentonite (OCB) became porous and the infrared difference spectrum was a curve. Additionally, the residual burning rates of OB and organic binder were measured, which were 82.72% and 2.30%, respectively. Finally, the influence of OCB on the properties of pellets were studied. The compressive strength of OCB-added green pellets (14.7 N/pellet) was better than that of OB-added pellets (10.3 N/pellet), and the range of melting temperature (173℃) was narrower than that of OB-added pellets (198℃). The compressive strength of OCB-added pellets increased from 2156 N/pellet to 3156 N/pellet with the roasting temperature increased from 1200℃ to 1250℃.
Research Article
Competitive precipitation behavior of hybrid reinforcements in copper matrix composites fabricated by powder metallurgy
Tao Lan, Yi-hui Jiang, Xiao-jun Zhang, Fei Cao, and  Shu-hua Liang
, Available online 29 March 2020, https://doi.org/10.1007/s12613-020-2052-x
Abstract:
Copper matrix composites reinforced by in situ-formed hybrid TiB whiskers and TiB2 particles were fabricated by powder metallurgy. Microstructure observations showed that there was a competitive precipitation behavior between TiBw and TiB2p, where the relative contents of the two reinforcements varied with sintering temperature. Based on thermodynamic and kinetic assessments, the precipitation mechanisms of the hybrid reinforcements were discussed, and the formation of both TiB whiskers and TiB2 particles from the local melting zone was thermodynamically favored. The precipitation kinetics were mainly controlled by a solid-state diffusion of B atoms. By forming a compact compound layer, in situ reactions were divided into two stages, where Zener growth and Dybkov growth prevailed, respectively. Accordingly, the competitive precipitation behavior was attributed to the transition of the growth model during the reaction process.
Research Article
Softening-melting behavior of mixed burden based on low-magnesium sinter and fluxed pellets
Gui-lin Wang, Jian Kang, Jian-liang Zhang, Yao-zu Wang, Zhi-yu Wang, Zheng-jian Liu, and  Chen-yang Xu
, Available online 26 March 2020, https://doi.org/10.1007/s12613-020-2047-7
Abstract:
Research Article
Effect of Mo Content on the Thermal Stability of Ti-Mo bearing Ferritic Steel
Yao Huang, Wei-ning Liu, Ai-min Zhao, Jun-ke Han, Zhi-gang Wang, and  Hong-xiang Yin
, Available online 26 March 2020, https://doi.org/10.1007/s12613-020-2045-9
Abstract:
The effects of tempering holding time at 700 ℃ on the morphology, mechanical properties, and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy. Equilibrium solid solution amount of Mo, Ti, and C in ferrite at various temperature were calculated. The variation in the sizes of nanoparticles with time at different Mo contents was analyzed. The experiments and calculations were in good agreement with one other, which showed that the change in the nanoparticle size of MNF steel was the smallest during the aging process. Higher Mo contents inhibited the maturation and growth of nanoparticles, but when the Mo content exceeded 0.37 wt%, no obvious inhibition effect was observed. The tensile strength and yield strength decreased continuously with the tempering time. The analysis of the strengthening and toughening mechanism showed that the different mechanical properties between the three was mainly determined by the grain refinement strengthening (the difference range was 30-40 MPa) and precipitation strengthening (the difference range was 78-127 MPa). MNF steel with an ideal chemical ratio had the highest thermodynamic stability, and LNF and HNF have relatively similar thermodynamic stabilities.
Research Article
The investigation of wear and mechanical properties of carburized AISI 8620 steel by powder metallurgy
Mehmet Akif Erden and  Fatih Aydin
, Available online 26 March 2020, https://doi.org/10.1007/s12613-020-2046-8
Abstract:
In this study, the effect of carburizing on tensile strength and wear resistance of AISI 8620 steel were investigated. Firstly, the alloy with 0.25 %C content was pressed at 700 MPa and sintered at the temperature of 1300°C, 1400°C and 1500°C for 1 hr. After determination of ideal sintering temperature, the carburizing process was applied to Alloy 1 and Alloy 2 (0.2 C% and 0.25%C) at 925°C for 4 h. The microstructure of the samples was characterized by Optical microscopy(OM), scanning electron microscopy (SEM). The mechanical and wear behavior of carburized and non-carburized samples were investigated by hardness, tensile and wear tests. The increase in ultimate tensile strength for Alloy 1 and Alloy 2 after carburizing was calculated as 134.4% and 138.1%, respectively.However, the decrease in elongation % for Alloy 1 and Alloy 2 after carburizing was determined as 62.6 % and 64.7 %, respectively. It is reported that the wear depth values of Alloy 2 for non-carburized and carburized conditions under load of 30 N is 231.2 µm and 100.1 µm, respectively. It is observed that oxidative wear changed to abrasive wear for the transition from load of 15N to load of 30N for Alloy 1 and Alloy 2.
Research Article
Effect of tool plunge depth on the microstructure and fracture behavior of AZ91 magnesium alloy refill friction stir spot welded joints
Hai-feng Zhang, Li Zhou, Wen-lin Li, Gao-hui Li, Yi-tang Tang, Ning Guo, and  Ji-cai Feng
, Available online 20 March 2020, https://doi.org/10.1007/s12613-020-2044-x
Abstract:
Refill friction stir spot welding (RFSSW) was applied to join the 2-mm-thick AZ91D-H24 magnesium alloy sheets successfully, and the effect of tool plunge depth on the microstructure and fracture behavior of the joints were investigated in detail. The sound surface formation of the joints can be obtained as the plunge depths were 2.0 mm and 2.5 mm. The plunge depth significantly affected the height of hook, and the higher plunge depth corresponded to the more severe upward bend of hook whose morphology compromised the tensile-shear properties of the joints. The hardness reached a minimum at the TMAZ due to the precipitation phases of this zone dissolved into the α-matrix during the welding process. The fracture modes of RFSSW joints can be divided into three types: shear fracture, plug fracture and shear-plug fracture. Among them, the joint under shear-plug fracture had the best tensile-shear load of 6400 N.
Research Article
Interface microstructure and formation mechanism of ultrasonic spot welding for Al-Ti dissimilar metals
Li Zhou, Shan Liu, Jie Min, Zhi-Wei Qin, Wen-Xiong He, Xiao-Guo Song, Hong-Bo Xu, and  Ji-Cai Feng
, Available online 20 March 2020, https://doi.org/10.1007/s12613-020-2043-y
Abstract:
The AA6061 Al and commercial pure Ti were welded by ultrasonic spot welding (USW). The focus of this investigation is the interface microstructure and joint formation. The Al-Ti USW joints were welded at the welding energy of 1100 J~ 3200 J. The joint appearance and interface microstructure were observed mainly by Optical microscope (OM) and field emission scanning electron microscope (SEM) The results indicated that good joint only can be achieved with proper welding energy of 2150 J. No significant intermetallic compound (IMC) was found under all conditions. The high energy barriers of Al-Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis. The heat input is crucial for the material plastic flow and bonding area which plays an important role in the joint formation.
Research Article
Oxidation pathway and kinetics of titania slag powders during cooling process in air
Wen-chao He, Cheng-yi Ding, Xue-wei Lv, and  Zhi-ming Yan
, Available online 20 February 2020, https://doi.org/10.1007/s12613-020-2019-y
Abstract:
The oxidation pathway and kinetics of titania slag powders in air were analyzed through differential scanning calorimetry (DSC) and thermogravimetry (TG). The oxidation pathway of titania slag powders in air is divided into three stages according to three exothermic peaks and three corresponding mass gain stages displayed in the non-isothermal DSC and TG curves respectively. The isothermal oxidation kinetics of high titania slag powders with different sizes were analyzed through ln-ln analysis method. The entire isothermal oxidation process includes the following two stages. The kinetic mechanism of first stage is described as f(α)=1.77(1-α)[-ln(1-α)]((1.77-1)/1.77),f(α)=1.97(1-a)[-ln(1-a)]((1.97-1)/1.97), and f(α)=1.18(1-α)[-ln(1-α)]((1.18-1)/1.18); whereas the kinetic mechanism of second stage for all samples can be described as[1-(1-α)(1/3)]2=kt. The activation energies of titania slag powders with different sizes (d1 < 0.075 mm, 0.125 < d2 < 0.150 mm, and 0.425 < d3 < 0.600 mm) at different reaction degrees are calculated. Under the current experimental conditions, the rate-controlling step at the first oxidation stage of all samples is a chemical reaction. The rate-controlling steps at the second oxidation stage are the chemical reaction and internal diffusion (d1<0.075 mm) and the internal diffusion (0.125 < d2 < 0.150 mm and 0.425 < d3 < 0.600 mm).
Research Article
The Evolution of the Ferronickel Particles During the Reduction of Low Grade Saprolitic Laterite Nickel Ore by Coal in the Temperature Range of 900 – 1250℃ with the Addition of CaO-CaF2-H3BO3
Zulfiadi Zulhan and  Windu Shalat
, Available online 20 February 2020, https://doi.org/10.1007/s12613-020-2025-0
Abstract:
The method to produce ferronickel at lower temperature (1250-1400℃) was applied since 1950s at Nippon Yakin Oheyama, Japan. Limestone was used as an additive to adjust the slag composition for lowering slag melting point. The ferronickel product was recovered by means of magnetic separator from semi-molten slag and metal after water quenching. In order to increase the efficiency of magnetic separation, bigger particle size of ferronickel is desired. Therefore, in this study, the influences of CaO, CaF2 and H3BO3 additives on the evolution of ferronickel particle at temperature ≤ 1250℃ were investigated. The experiments were conducted at 900-1250℃ with the addition of CaO, CaF2, and H3BO3. The reduction processes were carried out in a horizontal tube furnace for 2 h under argon atmosphere. The results showed that at 1250℃ with the CaO addition of 10% of the ore weight, the size of ferronickel particles of 20 μm was obtained. The ferronickel particle size can be increased to 165 μm by adding 10% CaO and 10% CaF2. The addition of boric acid further increased the ferronickel particle size to 376 μm as shown by the experiments with the addition of 10% CaO, 10% CaF2 and 10% H3BO3.
Research Article
Curing time effect on mesocosmic parameters of cemented paste backfill through particle flow code technique
Lang Liu, Jie Xin, Chao Huan, Yujiao Zhao, Xiang Fan, Lijie Guo, and  KI-IL Song
, Available online 11 February 2020, https://doi.org/10.1007/s12613-020-2007-2
Abstract:
Several special mechanical properties such as the dilatancy and compressibility of cemented paste backfilll (CPB) are controlled by the internal microstructure and its evolution. To explore the mesocosmic structure changes of CPB during the development process. Based on the scanning electron microscopy (SEM) and mechanical test results of CPB, the particle size information of CPB was extracted, and a two-dimensional (2D) particle flow code (PFC) model of CPB was established to study the evolution rule of mesoscopic parameters during CPB development. The FISH language of the PFC was used to develop a program for establishing a PFC model according to SEM results. The mesoscopic parameters of CPB samples at different curing times, such as the coordination number (Cn), contact force chain, and rose diagram were obtained by recording and loading; these were used to analyze the intrinsic relationship between mesoscopic parameter variations and macroscopic mechanical response during CPB development. It is of great significance to establish the physical model of CPB by using PFC to reveal the mesoscopic structure of CPB.
Invited Review
A review of the synthesis and application of zeolites from coal-based solid wastes
Xiao-yu Zhang, Chun-quan Li, Shui-lin Zheng, Yong-hao Di, and  Zhi-ming Sun
, Available online 22 January 2021, https://doi.org/10.1007/s12613-021-2256-8
Abstract:
Zeolite derived from coal-based solid wastes (coal gangue and coal fly ash) not only can cope with the environmental problems caused by coal-based solid wastes but also achieve their valuable utilization. In this paper, the physicochemical properties of coal gangue and coal fly ash were introduced. Then the mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes were introduced as well. After that, the synthesis processes of coal-based solid waste zeolite and their merits and demerits were summarized in detail. Furthermore, the application characteristics of various coal-based solid waste zeolites and their common application fields were also illustrated. By the end of this review, we propose that alkaline fusion-assisted supercritical hydrothermal crystallization may be an efficient method for synthesizing coal-based solid waste zeolites. Besides, more attention should be paid to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field of volatile organic compounds adsorption removal.
Invited Review
Study on influencing factors and mechanism of high-temperature oxidation of high-entropy alloy:A review
Ya Wei, Yu Fu, Zhi-min Pan, Yi-chong Ma, Hong-xu Cheng, Qian-cheng Zhao, Hong Luo, and  Xiao-gang Li
, Available online 22 January 2021, https://doi.org/10.1007/s12613-021-2257-7
Abstract:
Abstract: High-temperature oxidation is a common failure behavior in high-temperature environment, which is widely existed in aircraft engines and aerospace thrusters, and the development of anti-high-temperature oxidation materials has always been the unremitting pursuit of human beings. Ni-based alloy is a common high-temperature material, but the cost is too high. The emergence of high-entropy alloy may make people have more choices for high-temperature oxidation. High-entropy alloy shows good performance in the process of high-temperature oxidation because of its special structure and properties. In this paper, the achievements of high-temperature oxidation in recent years are reviewed. The environment on high-temperature oxidation, temperature, phase structure, alloy elements and preparation methods of high-entropy alloys are summarized. Besides, the reason why high-entropy alloy has good anti-oxidation ability at high-temperature is illuminated. Finally, combined with the current research results, the material selection and application prospect of high-temperature oxidation are put forward.Key words: High-entropy alloy; High-temperature oxidation; Influencing factors; Oxidation mechanism
Invited Review
The effect of microstructure on corrosion behavior of ultra-high strength martensite steel-A literature review
Li Wang, Chao-fang Dong, Cheng Man, Ya-bo Hu, Qiang Yu, and  Xiao-gang Li
, Available online 19 December 2020, https://doi.org/10.1007/s12613-020-2242-6
Abstract:
The ultra-high strength martensite steels are widely used in aerospace, ocean engineering, etc., due to their high strength, good ductility and acceptable corrosion resistance. This paper provides a review for the influence of microstructure on corrosion behavior of ultra-high strength martensite steels. Pitting is the most common corrosion type of ultra-high strength stainless steels, which always occurs at weak area of passive film such as inclusions, carbide/intermetallic interfaces. Meanwhile, the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion. The precipitation, dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps, leading to hydrogen embrittlement and stress corrosion cracking for ultra-high strength martensite steels. Yet, the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for ultra-high strength martensite steels. Finally, the corrosion mechanisms of additive manufacturing ultra-high strength steels and the ideas for designing new ultra-high strength martensite steel are explored.
Invited Review
Review on electrochemical degradation of phenolic compounds
You Xue, Xi Hu, Qian Sun, Hong-yang Wang, Hai-long Wang, and  Xin-mei Hou
, Available online 16 December 2020, https://doi.org/10.1007/s12613-020-2241-7
Abstract:
Phenolic compounds are widely present in domestic sewage and industrial sewage and have serious environmental hazards. The electrochemical oxidation (EO) is demonstrated to be one of the most promising methods for the degradation of sewage due to its advantages of high efficiency, environmental compatibility, and safety. In this work, we present an in-depth overview of the mechanism and the factors affecting the degradation of phenolic compounds by EO. In particular, the effects of treating phenolic compounds with different anode materials are discussed in detail. It is found that the non-active anode shows higher degradation efficiency, less intermediate accumulation, and lower energy consumption than the active anode. EO combined other treatment methods (biological, photo, Fenton, etc.) present some advantages, such as low energy consumption and high degradation rate. Meanwhile, the remaining drawbacks of the electrochemical oxidation process as the phenolic compound treatment system have been discussed. Furthermore, to improve the feasibility of the practical application of EO technology, some future research directions are put forward.
Invited Review
Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all solid-state lithium-ion battery—A review
Zao-hong Zhang, Tao Wei, Jia-hao Lu, Qi-ming Xiong, Yue-han Ji, Zong-yuan Zhu, and  Liu-ting Zhang
, Available online 12 December 2020, https://doi.org/10.1007/s12613-020-2239-1
Abstract:
In order to achieve higher safety and higher energy density lithium-ion batteries, all solid-state lithium-ion batteries (ASSLIBs) have been widely studied. Recently, some review and experimental papers have focused on how to improve the ionic conductivity, stabilize the electrochemical performance and enhance the interface compatibility between the electrodes and the solid-state electrolytes (SSEs), including oxides, sulfides, composite electrolytes, gel electrolytes and so on. Among these SSEs, the garnet-structured Li7La3Zr2O12 (LLZO) is regarded as one of the most expected candidates for SSEs. However, numbers of challenges also exist for garnet-structured LLZO-based electrolytes, such as low ionic conductivity, indefinite cubic phase, poor interfacial compatibility with anodes/cathodes and so on, which urges us to explore effective solutions. Herein, we will review recent developments on garnet-structured LLZO and provide comprehensive insights to guide the development of garnet-structured LLZO electrolytes in this work. We will not only systematically and comprehensively discuss the following content, including preparation, element doping, the structure, stability, polymer-ceramic composite electrolytes (PCCEs) and interface improvement of LLZO, but also give a forward-looking perspective. We hope that it would provide meaningful guidance for the advanced solid garnet-electrolytes, and we think that the commercialization of ASSLIBs will be achieved in the near future.
Invited Review
Review and prospect of bioleaching in the Chinese mining industry
Sheng-hua Yin, Wei Chen, Xing-le Fan, Jia-ming Liu, and  Li-bo Wu
, Available online 28 November 2020, https://doi.org/10.1007/s12613-020-2233-7
Abstract:
As the second largest economy with a rapid economic growth, China has a huge demand for metals and energies. Production and consumption of several metals in China including copper, gold and rare earth elements (REEs) take the first place in the world in recent years. Bioleaching, an approach for low grade and refractory ores has been applied in industrial production, which makes great contributions to the development of Chinese mining industry. The exploration and application of bioleaching in China is reviewed in this study. Production and consumption of several metals in the past decade in China are introduced. Technological processes and main bioleaching operations in China, such as Zijinshan Copper Mine and Mianhuakeng Uranium Mine are presented. Current challenges of bioleaching operations in China are also introduced. Prospects including efficiency improvement and environmental protection are proposed as well according to current situation in the Chinese bioleaching industry.
Invited Review
Recovery and separation of rare earth elements by molten salt electrolysis
Tai-qi Yin, Yun Xue, Yong-de Yan, Zhen-chao Ma, Fu-qiu Ma, Mi-lin Zhang, Gui-ling Wang, and  Min Qiu
, Available online 26 November 2020, https://doi.org/10.1007/s12613-020-2228-4
Abstract:
With the increasing demand of rare earth metals on functional materials, recovery of rare earth elements (REEs) from secondary resources has become an imperative issue for the transition to a green economy. Molten salt electrolysis route has the advantages of low water consumption and low hazardous wastes during the REEs recovery process. In this review, we systematically summarize the separation and electroextraction of REEs on various reactive electrodes in different molten salts. The review also highlights the relationship between the formed alloy phases and the electrodeposition parameters including the applied potential, current and ion concentration. Moreover, we evaluate the feasibility of LiF–NaF–KF (FLiNaK) electrolyte on the basis of thermodynamics for alternative research to recover REEs. Problems related to REEs separation/recovery and the choice of electrolyte are discussed in detail to realize the low-energy and high current efficiency of practical applications.
Invited Review
Powder metallurgy of high-entropy alloys and related composites: A short review
Bo-ren Ke, Yu-chen Sun, Yong Zhang, Wen-rui Wang, Wei-min Wang, Pei-yan Ma, Wei Ji, and  Zheng-yi Fu
, Available online 11 November 2020, https://doi.org/10.1007/s12613-020-2221-y
Abstract:
High-entropy alloys (HEAs) have attracted more and more attentions because of the unique properties including high strength, hardness and chemical stability, good wear resistance and so on. Powder metallurgy is one of the most important methods to fabricate HEAs materials. This paper introduced the synthesis of HEAs powders and the consolidation of HEAs bulks. The phase transformation, microstructure evolution and mechanical properties of HEAs obtained by powder metallurgy were summarized. In addition, the HEAs-related materials such as Ceramic-HEAs cermets and HEAs-based composites fabricated by powder metallurgy were also included.
Invited Review
Study of metallurgical process engineering
Rui-yu Yin
, Available online 8 November 2020, https://doi.org/10.1007/s12613-020-2220-z
Abstract:
After nearly one hundred years of exploration, recent metallurgy (metallurgical science and engineering) has gradually formed a framework system constructed by the integration of three levels of knowledge, namely 1) micro-metallurgy at the atomic/molecular level; 2) process metallurgy at the procedure/device level; 3) macro-dynamic metallurgy at the full process/process group level.For the development of macro-dynamic metallurgy, it must get rid of the concept of "isolated system" and establish the concepts of "flow", "process network", and "operating program" to study the "structure-function-efficiency" in the macro-dynamic operation of metallurgical manufacturing processes. It means that taking "flow" as the ontology and observing dynamic change by "flow" to solve the green and intelligent proposition of metallurgical enterprises.Metallurgical process engineering is the overall integrated metallurgy, top-level designed metallurgy, macro-dynamic operated metallurgy, engineering science level metallurgy.Metallurgical process engineering is a cross-level, comprehensive and integrated study of the macro and dynamic operation of manufacturing processes. It studies the physical nature and constitutive characteristics of the dynamic operation of steel manufacturing process, as well as the analysis-optimization of set of procedure functions, coordination-optimization of set of procedures’ relations, reconstruction-optimization of set of procedures in the manufacturing process. It establishes rules for the macro-operation of the manufacturing process, as well as the dynamic and precise objectives of engineering design and production operation.
Invited Review
Research progress of electrochemical impedance technique applied in the high-capacity lithium-ion battery
Li-fan Wang, Meng-meng Geng, Xia-nan Ding, Chen Fang, Yu Zhang, Shan-shan Shi, Yong Zheng, Kai Yang, Chun Zhan, and  Xin-dong Wang
, Available online 4 November 2020, https://doi.org/10.1007/s12613-020-2218-6
Abstract:
The world’s energy system is changing dramatically. The Li ion battery, as a powerful and highly effective energy storage technique, is critical to the new-energy revolution for their continuous expanding application in the electric vehicles and the electric grids. Over the whole lifetime of the batteries, it is essential to monitor their state of health. It is not only for the mileage prediction, safety management in the running electric vehicle, but also for an “end-of-life” evaluation to repurpose the power batteries. Electrochemical impedance spectroscopy (EIS) has been widely used to quickly and non-destructively diagnose the health state of batteries. In this review, we have outlined the working principles of several electrochemical impedance techniques, and further evaluated its application prospects to achieve the goal of non-destructive testing of battery health. We believe that EIS can scientifically and reasonably perform real-time monitoring and evaluation of electric vehicle power batteries in the future, and mentions the important role of vehicle safety and battery gradient utilization.
Invited Review
Review on the cyclic plasticity of magnesium alloys: Experiments and constitutive models
Guo-zheng Kang and  Hang Li
, Available online 4 November 2020, https://doi.org/10.1007/s12613-020-2216-8
Abstract:
Fatigue analysis has always been concerned in the design and assessment of Mg alloy structure components unavoidably subjected to cyclic loading, and the study on the cyclic deformation of the materials is the fundamentals to research the correspondent fatigue failure. Therefore, recent progresses in the studies on the cyclic plasticity of Mg alloys are reviewed in this work. Firstly, existing macroscopic and microscopic experimental results of Mg alloys are summarized; then, the corresponding macroscopic phenomenological and crystal plasticity based constitutive models are reviewed, respectively; finally, some conclusions and future topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.
Invited Review
Iron and steel metallurgy—Ongoing challenges
Dieter Senk
, Available online 12 September 2020, https://doi.org/10.1007/s12613-020-2191-0
Abstract:
Iron and steel making lasts for several thousand years and is based on changing technologies. The driving forces for those changes are economical or disposability of raw material and energy sources. In this paper three challenges for the newly development in iron and steel metallurgy are highlighted: Continuous casting strand size increase, solidification behaviour of new steel grades, and suppression of CO2-emission during iron making. Examples underline the recent process of technological changes. 40 years of Sino German university cooperation in metallurgy are part of those technological development.
Invited Review
Medium-Mn steels for hot forming application in automotive industry
Shuo-shuo Li and  Hai-wen Luo
, Available online 3 September 2020, https://doi.org/10.1007/s12613-020-2179-9
Abstract:
Advanced high strength steels have been widely used to improve crashworthiness and lightweight of vehicles. Hot forming of boron alloyed steels, like 22MnB5, could produce ultrahigh strength steel parts with no springback and accurate control of dimensions, which is very difficult for the popular cold stamping process. Moreover, the hot forming of recently developed medium-Mn steels could have many advantages over the hot formed 22MnB5, e.g. better mechanical properties and lower production cost. In this paper, the hot forming process in automotive industries, the hot formed steel grades, medium-Mn steel grades and their application in hot forming have been all reviewed in depth. In particular, the adaptability of both medium-Mn steels and the present popular 22MnB5 into the hot forming process has been compared thoroughly. Finally, the future researches are suggested on the hot forming of medium-Mn steels for succeeding in commercialization.
Invited Review
Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review
Yu-ting Wu, Chong Li, Ye-fan Li, Jing Wu, Xing-chuan Xia, and  Yong-chang Liu
, Available online 27 August 2020, https://doi.org/10.1007/s12613-020-2177-y
Abstract:
Recently, Ni3Al-based alloys have drawn much attention as candidates for high-temperature structural materials due to its excellent comprehensive properties. The microstructure and corresponding mechanical properties of Ni3Al-based alloys are known to be susceptible to the heat treatment. Thus, it is of significance to employ various heat treatments to get the desirable mechanical properties of the alloys. This paper briefly summarized the recent advances about the microstructure evolution which occurs during the heat treatment of Ni3Al-based alloys. Besides of γ' phase and γ phase, the precipitations of β phase, α-Cr precipitates and carbides are also found in Ni3Al-based alloys with various addition of alloying elements. The evolution in morphology, size and volume fraction of various types of secondary phases during heat treatment are reviewed, involving γ' phase, β phase, α-Cr precipitate and carbides, and the kinetics of the growth of precipitates are also analyzed. Furthermore, the influences of heat treatment on the mechanical properties of Ni3Al-based alloys are discussed.
Invited Review
Progress in Developing Self-Consolidating Concrete (SCC) Constituting Recycled Concrete Aggregates: A Review
Yu-Xuan Liu, Tung-Chai Ling, and  Kim-Hung Mo
, Available online 12 April 2020, https://doi.org/10.1007/s12613-020-2060-x
Abstract:
Recycled concrete aggregate (RCA) derived from demolition waste has been widely explored for use in civil engineering applications. One of the promising strategies globally is to utilize RCA in concrete products. However, the use of RCA in high performance concrete such as self-consolidating concrete (SCC) has only been studied in the past decade. This paper summarizes recent publications on the use of coarse and/or fine RCA in SCC. The high-water absorption and porous structure of RCA, as expected, have been a challenge to produce high fluidity mixture. According to the analysis of published data, a lower strength reduction (within 23% regardless of coarse RCA content) is noticed in SCC as compared with vibrated concrete, possibly attributed to the higher paste content in the SCC matrix which enhances the weak surface layer of RCA and interfacial transition zone. Similarly, SCC tends to become less durable with RCA substitution, though the deterioration can be minimized by using treated RCA through removal and strengthening the adhered mortar. To date, the information reported on the role of RCA on the long-term performance of SCC is still limited, hence a wide range of studies are needed to demonstrate the feasibility of RCA-SCC in field applications.