Mohammad Khosravi, Mohammad Mansouri, Ali Gholami, and Yadollah Yaghoubinezhad, Effect of graphene oxide and reduced graphene oxide nanosheets on the microstructure and mechanical properties of mild steel jointing by flux-cored arc welding, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp.505-514. https://dx.doi.org/10.1007/s12613-020-1966-7
Cite this article as: Mohammad Khosravi, Mohammad Mansouri, Ali Gholami, and Yadollah Yaghoubinezhad, Effect of graphene oxide and reduced graphene oxide nanosheets on the microstructure and mechanical properties of mild steel jointing by flux-cored arc welding, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp.505-514. https://dx.doi.org/10.1007/s12613-020-1966-7

Effect of graphene oxide and reduced graphene oxide nanosheets on the microstructure and mechanical properties of mild steel jointing by flux-cored arc welding

  • The effect of graphene oxide (GO) and reduced graphene oxide (RGO) nanosheets on the microstructure and mechanical properties of welded joints of mild steel was evaluated by flux-cored arc welding. GO was synthesized by the Hummer’s method and was reduced under hydrothermal conditions at a pressure of 1.1 MPa at 180°C for 12 h. 1, 3, and 10 mg/mL paste fillers were used in GO and RGO, and applied to the weld notch. The results clearly showed that by increasing the concentration of RGO up to 10 mg/mL, the tensile strength and hardness of the weld metal were improved by approximately 20.5% and 38.4%, respectively, because the coarse grains were changed into fine domains. The domain of the nanosheets cluster was 19.85 × 10−9 m. Specifically, the RGO nanosheets contributed to modifying the mechanical properties of the welded steel, likely due to dislocation pinning.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return