Ying-zhi Chen, Dong-jian Jiang, Zheng-qi Gong, Jing-yuan Li, and Lu-ning Wang, Anodized metal oxide nanostructures for photoelectrochemical water splitting, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 584-601. https://doi.org/10.1007/s12613-020-1983-6
Cite this article as:
Ying-zhi Chen, Dong-jian Jiang, Zheng-qi Gong, Jing-yuan Li, and Lu-ning Wang, Anodized metal oxide nanostructures for photoelectrochemical water splitting, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 584-601. https://doi.org/10.1007/s12613-020-1983-6
Invited Review

Anodized metal oxide nanostructures for photoelectrochemical water splitting

+ Author Affiliations
  • Corresponding author:

    Lu-ning Wang    E-mail: luning.wang@ustb.edu.cn

  • Received: 3 September 2019Revised: 3 January 2020Accepted: 6 January 2020Available online: 8 January 2020
  • Photoelectrochemical (PEC) water splitting offers the capability of harvesting, storing, and converting solar energy into clean and sustainable hydrogen energy. Metal oxides are appealing photoelectrode materials because of their easy manufacturing and relatively high stability. In particular, metal oxides prepared by electrochemical anodization are typical of ordered nanostructures, which are beneficial for light harvesting, charge transfer and transport, and the adsorption and desorption of reactive species due to their high specific surface area and rich channels. However, bare anodic oxides still suffer from low charge separation and sunlight absorption efficiencies. Accordingly, many strategies of modifying anodic oxides have been explored and investigated. In this review, we attempt to summarize the recent advances in the rational design and modifications of these oxides from processes before, during, and after anodization. Rational design strategies are thoroughly addressed for each part with an aim to boost overall PEC performance. The ongoing efforts and challenges for future development of practical PEC electrodes are also presented.

  • loading
  • [1]
    R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73. doi: 10.1007/s12613-018-1548-0
    [2]
    H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244. doi: 10.1007/s12613-018-1567-x
    [3]
    S.N. Li, R.X. Ma, and C.Y. Wang, Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 310. doi: 10.1007/s12613-018-1574-y
    [4]
    R. Kullaiah, L. Elias, and A.C. Hegde, Effect of TiO2 nanoparticles on hydrogen evolution reaction activity of Ni coatings, Int. J. Miner. Metall. Mater., 25(2018), No. 4, p. 472. doi: 10.1007/s12613-018-1593-8
    [5]
    H.G. Park and J.K. Holt, Recent advances in nanoelectrode architecture for photochemical hydrogen production, Energy Environ. Sci., 3(2010), No. 8, p. 1028. doi: 10.1039/b922057g
    [6]
    B.A. Pinaud, J.D. Benck, L.C. Seitz, A.J. Forman, Z.B. Chen, T.G. Deutsch, B.D. James, K.N. Baum, G.N. Baum, S. Ardo, H.L. Wang, E. Miller, and T.F. Jaramillo, Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy Environ. Sci., 6(2013), No. 7, p. 1983. doi: 10.1039/c3ee40831k
    [7]
    A. Mehta, A. Mishra, S. Basu, N.P. Shetti, K.R. Reddy, T.A. Saleh, and T.M. Aminabhavi, Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production—A review, J. Environ. Manage., 250(2019), art. No. 109486.
    [8]
    Z. Wang, R.R. Roberts, G.F. Naterer, and K.S. Gabriel, Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies, Int. J. Hydrogen Energy, 37(2012), No. 21, p. 16287. doi: 10.1016/j.ijhydene.2012.03.057
    [9]
    Y. Yang, S.W. Niu, D.D. Han, T.Y. Liu, G.M. Wang, and Y. Li, Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting, Adv. Energy Mater., 7(2017), No. 19, art. No. 1700555.
    [10]
    C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, and K. Yoo, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment, Electrochim. Acta, 317(2019), p. 416. doi: 10.1016/j.electacta.2019.06.010
    [11]
    C.V. Reddy, I.N. Reddy, B. Akkinepally, V.V.N. Harish, K.R. Reddy, and S. Jaesool, Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation, Ceram. Int., 45(2019), No. 12, p. 15298. doi: 10.1016/j.ceramint.2019.05.020
    [12]
    S.C. Huang and C.Y. Lin, Electrosynthesis, activation, and applications of nickel-iron oxyhydroxide in (photo-)electrochemical water splitting at near neutral condition, Electrochim. Acta, 321(2019), art. No. 134667.
    [13]
    Y.K. Gaudy and S. Haussener, Rapid performance optimization method for photoelectrodes, J. Phys. Chem. C, 123(2019), No. 36, p. 21838. doi: 10.1021/acs.jpcc.9b04102
    [14]
    P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, and R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles, ChemistrySelect, 3(2018), No. 31, p. 9025. doi: 10.1002/slct.201801198
    [15]
    R.Z. Chen, C. Zhen, Y.Q. Yang, X.D Sun, J.T.S. Irvine, L.Z. Wang, G. Liu, and H.M. Cheng, Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell, Nano Energy, 59(2019), p. 683. doi: 10.1016/j.nanoen.2019.03.009
    [16]
    T. Higashi, H. Nishiyama, Y. Suzuki, Y. Sasaki, T. Hisatomi, M. Katayama, T. Minegishi, K. Seki, T. Yamada, and K. Domen, Transparent Ta3N5 photoanodes for efficient oxygen evolution toward the development of tandem cells, Angew. Chem. Int. Ed., 58(2019), No. 8, p. 2300. doi: 10.1002/anie.201812081
    [17]
    K.R. Reddy, C.V. Reddy, M.N. Nadagouda, N.P. Shetti, S. Jaesool, and T.M. Aminabhavi, Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications, J. Environ. Manage., 238(2019), p. 25. doi: 10.1016/j.jenvman.2019.02.075
    [18]
    A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, and T.M. Aminabhavi, Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review, Carbon, 149(2019), p. 693. doi: 10.1016/j.carbon.2019.04.104
    [19]
    J. Seo, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, and K. Domen, Solar-driven water splitting over a BaTaO2N photoanode enhanced by annealing in argon, ACS Appl. Energy Mater., 2(2019), No. 8, p. 5777. doi: 10.1021/acsaem.9b00908
    [20]
    Y.W. Wang, S. Jin, G.X. Pan, Z.X. Li, L. Chen, G. Liu, and X.X. Xu, Zr doped mesoporous LaTaON2 for efficient photocatalytic water splitting, J. Mater. Chem. A, 7(2019), No. 10, p. 5702. doi: 10.1039/C8TA11561C
    [21]
    L. Wang, Y.T. Qian, J.M. Du, H.R. Wu, Z. Wang, G. Li, K.D. Li, W.M. Wang, and D.J. Kang, Facile synthesis of cactus-shaped CdS–Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance, Appl. Surf. Sci., 492(2019), p. 849. doi: 10.1016/j.apsusc.2019.06.264
    [22]
    S. Chandrasekaran, L. Yao, L.B. Deng, C. Bowen, Y. Zhang, S.M. Chen, Z.Q. Lin, F. Peng, and P.X. Zhang, Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chem. Soc. Rev., 48(2019), No. 15, p. 4178. doi: 10.1039/C8CS00664D
    [23]
    J. Ge, Y. Yu, and Y.F. Yan, Earth-abundant trigonal BaCu2Sn (SexS1–x)4 (x = 0–0.55) thin films with tunable band gaps for solar water splitting, J. Mater. Chem. A, 4(2016), No. 48, p. 18885. doi: 10.1039/C6TA06702F
    [24]
    Y.R. Lu, P.F. Yin, J. Mao, M.J. Ning, Y.Z. Zhou, C.K. Dong, T. Ling, and X.W. Du, A stable inverse opal structure of cadmium chalcogenide for efficient water splitting, J. Mater. Chem. A, 3(2015), No. 36, p. 18521. doi: 10.1039/C5TA03845F
    [25]
    V. Andrei, R.L.Z. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, and E. Reisner, Scalable triple cation mixed halide perovskite–BiVO4 tandems for bias-free water splitting, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801403.
    [26]
    R. Katsube, K. Kazumi, T. Tadokoro, and Y. Nose, Reactive epitaxial formation of a Mg–P–Zn ternary semiconductor in Mg/Zn3P2 solar cells, ACS Appl. Mater. Interfaces, 10(2018), No. 42, p. 36102. doi: 10.1021/acsami.8b11423
    [27]
    Q. Li, M.J. Zheng, B. Zhang, C.Q. Zhu, F.Z. Wang, J.N. Song, M. Zhong, L. Ma, and W.Z. Shen, Inp nanopore arrays for photoelectrochemical hydrogen generation, Nanotechnology, 27(2016), No. 7, art. No. 075704.
    [28]
    F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev., 42(2013), No. 6, p. 2294. doi: 10.1039/C2CS35266D
    [29]
    F. Qian, G.M. Wang, and Y. Li, Solar-driven microbial photoelectrochemical cells with a nanowire photocathode, Nano Lett., 10(2010), No. 11, p. 4686. doi: 10.1021/nl102977n
    [30]
    B.S. Wang, R.Y. Li, Z.Y. Zhang, W.W. Zhang, X.L. Yan, X.L. Wu, G.A. Cheng, and R.T. Zheng, Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting, J. Mater. Chem. A, 5(2017), No. 27, p. 14415. doi: 10.1039/C7TA02254A
    [31]
    Z.W. Wang, X.L. Li, C.K. Tan, C. Qian, A.C. Grimsdale, and A.I.Y. Tok, Highly porous SnO2 nanosheet arrays sandwiched within TiO2 and CdS quantum dots for efficient photoelectrochemical water splitting, Appl. Surf. Sci., 470(2019), p. 800. doi: 10.1016/j.apsusc.2018.11.182
    [32]
    Q. Cao, J. Yu, K.P. Yuan, M. Zhong, and J.J. Delaunay, Facile and large-area preparation of porous Ag3PO4 photoanodes for enhanced photoelectrochemical water oxidation, ACS Appl. Mater. Interfaces, 9(2017), No. 23, p. 19507. doi: 10.1021/acsami.7b03098
    [33]
    E.Y. Haque, Y. Yamauchi, V. Malgras, K.R. Reddy, J.W. Yi, M.S.A. Hossain, and J. Kim, Nanoarchitectured graphene-organic frameworks (GOFs): Synthetic strategies, properties, and applications, Chem. Asian J., 13(2018), No. 23, p. 3561. doi: 10.1002/asia.201800984
    [34]
    P.S. Shinde, M.A. Mahadik, S.Y. Lee, J. Ryu, S.H. Choi, and J.S. Jang, Surfactant and TiO2 underlayer derived porous hematite nanoball array photoanode for enhanced photoelectrochemical water oxidation, Chem. Eng. J., 320(2017), p. 81. doi: 10.1016/j.cej.2017.03.040
    [35]
    Z. Li, L. Shi, D. Franklin, S. Koul, A. Kushima, and Y. Yang, Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays, Nano Energy, 51(2018), p. 400. doi: 10.1016/j.nanoen.2018.06.083
    [36]
    C.Y. Hu, K. Chu, Y.H. Zhao, and W.Y. Teoh, Efficient photoelectrochemical water splitting over anodized p-type NiO porous films, ACS Appl. Mater. Interfaces, 6(2014), No. 21, p. 18558. doi: 10.1021/am507138b
    [37]
    X.C. Dai, S. Hou, M.H. Huang, Y.B. Li, T. Li, and F.X. Xiao, Electrochemically anodized one-dimensional semiconductors: A fruitful platform for solar energy conversion, J. Phys. Energy, 1(2019), art. No. 022002.
    [38]
    Y.L. He, R.D. Xu, S.W. He, H.S. Chen, K. Li, Y. Zhu, and Q.F. Shen, Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 288. doi: 10.1007/s12613-018-1572-0
    [39]
    S.H. Lv and J. Wang, The technical support of nanoart: Anodization process, Anti-Corros. Methods Mater., 66(2019), No. 2, p. 242. doi: 10.1108/ACMM-08-2017-1826
    [40]
    M.C. Huang, T.H. Wang, B.J. Wu, J.C. Lin, and C.C. Wu, Anodized ZnO nanostructures for photoelectrochemical water splitting, Appl. Surf. Sci., 360(2016), p. 442. doi: 10.1016/j.apsusc.2015.09.174
    [41]
    Y.K. Li, H.M. Yu, C.K. Zhang, W. Song, G.F. Li, Z.G. Shao, and B.L. Yi, Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell, Electrochim. Acta, 107(2013), p. 313. doi: 10.1016/j.electacta.2013.05.090
    [42]
    R. Sánchez-Tovar, R.M. Fernández-Domene, D.M. García-García, and J. García-Antón, Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization, J. Power Sources, 286(2015), p. 224. doi: 10.1016/j.jpowsour.2015.03.174
    [43]
    V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27(1999), No. 7, p. 629. doi: 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
    [44]
    P. Qiu, H.F. Yang, Y. Song, L.J. Yang, L.J. Lv, X. Zhao, L. Ge, and C.F. Chen, Potent and environmental-friendly L-cysteine @ Fe2O3 nanostructure for photoelectrochemical water splitting, Electrochim. Acta, 259(2018), p. 86. doi: 10.1016/j.electacta.2017.10.168
    [45]
    A. Apolinário, T. Lopes, C. Costa, J.P. Araújo, and A.M. Mendes, Multilayered WO3 nanoplatelets for efficient photoelectrochemical water splitting: The role of the annealing ramp, ACS Appl. Energy Mater., 2(2019), No. 2, p. 1040. doi: 10.1021/acsaem.8b01530
    [46]
    R.V. Gonçalves, H. Wender, P. Migowski, A.F. Feil, D. Eberhardt, J. Boita, S. Khan, G. Machado, J. Dupont, and S.R. Teixeira, Photochemical hydrogen production of Ta2O5 nanotubes decorated with NiO nanoparticles by modified sputtering deposition, J. Phys. Chem. C, 121(2017), No. 11, p. 5855. doi: 10.1021/acs.jpcc.6b10540
    [47]
    S. John, S.S. Vadla, and S.C. Roy, High photoelectrochemical activity of CuO nanoflakes grown on Cu foil, Electrochim. Acta, 319(2019), p. 390. doi: 10.1016/j.electacta.2019.07.008
    [48]
    A. Sápi, A. Varga, G.F. Samu, D. Dobó, K.L. Juhász, B. Takács, E. Varga, Á. Kukovecz, Z. Kónya, and C. Janáky, Photoelectrochemistry by design: Tailoring the nanoscale structure of Pt/NiO composites leads to enhanced photoelectrochemical hydrogen evolution performance, J. Phys. Chem. C, 121(2017), No. 22, p. 12148. doi: 10.1021/acs.jpcc.7b00429
    [49]
    K. Sivula, F. Le Formal, and M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem, 4(2011), No. 4, p. 432. doi: 10.1002/cssc.201000416
    [50]
    C.Y. Lee, L. Wang, Y. Kado, R. Kirchgeorg, and P. Schmuki, Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting, Electrochem. Commun., 34(2013), p. 308. doi: 10.1016/j.elecom.2013.07.024
    [51]
    Y.Q. Wan, A.N. Xu, C.F. Dong, C. He, K. Xiao, Y.W. Tian, and X.G. Li, Co/Mn co-doped TiO2 nanotube arrays for enhanced photoelectrochemical properties: Experimental and DFT investigations, J. Mater. Sci., 53(2018), No. 14, p. 9988. doi: 10.1007/s10853-018-2316-2
    [52]
    K. Chitrada, K.S. Raja, D. Rodriguez, and D. Chidambaram, Photoelectrochemical behavior of nanoporous oxide of FeNdB alloy, J. Electrochem. Soc., 162(2015), No. 4, p. H220. doi: 10.1149/2.0511504jes
    [53]
    T. Li, D.Y. Ding, Z.B. Dong, and C.Q. Ning, Photoelectrochemical water splitting properties of Ti–Ni–Si–O nanostructures on Ti–Ni–Si alloy, Nanomaterials, 7(2017), No. 11, p. 359. doi: 10.3390/nano7110359
    [54]
    X.F. Zhang, B.Y. Zhang, Y.P. Luo, X.W. Lv, and Y. Shen, Phosphate modified N/Si co-doped rutile TiO2 nanorods for photoelectrochemical water oxidation, Appl. Surf. Sci., 391(2017), p. 288. doi: 10.1016/j.apsusc.2016.07.035
    [55]
    S.H. Liu, L.X. Yang, S.H. Xu, S.L. Luo, and Q.Y. Cai, Photocatalytic activities of C–N-doped TiO2 nanotube array/carbon nanorod composite, Electrochem. Commun., 11(2009), No. 9, p. 1748. doi: 10.1016/j.elecom.2009.07.007
    [56]
    Q.N Sun, Y.P. Peng, H.L. Chen, K.L. Chang, Y.N. Qiu, and S.W. Lai, Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays, J. Hazard. Mater., 319(2016), p. 121. doi: 10.1016/j.jhazmat.2016.02.078
    [57]
    B.J. Rani, M. Praveenkumar, S. Ravichandran, V. Ganesh, R.K. Guduru, G. Ravi, and R. Yuvakkumar, Ultrafine M-doped TiO2 (M = Fe, Ce, La) nanosphere photoanodes for photoelectrochemical water-splitting applications, Mater. Charact., 152(2019), p. 188. doi: 10.1016/j.matchar.2019.04.024
    [58]
    Y.C. Yin, X.W. Zhang, and C.H. Sun, Transition-metal-doped Fe2O3 nanoparticles for oxygen evolution reaction, Prog. Nat. Sci. Mater. Int., 28(2018), No. 4, p. 430. doi: 10.1016/j.pnsc.2018.07.005
    [59]
    M.C. Huang, W.S. Chang, J.C. Lin, Y.H. Chang, and C.C. Wu, Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting, J. Alloys Compd., 636(2015), p. 176. doi: 10.1016/j.jallcom.2015.02.166
    [60]
    X.B. Bu, Y.X. Gao, S.H. Zhang, and Y. Tian, Amorphous cerium phosphate on P-doped Fe2O3 nanosheets for efficient photoelectrochemical water oxidation, Chem. Eng. J., 355(2019), p. 910. doi: 10.1016/j.cej.2018.08.221
    [61]
    A. Sreedhar, I.N. Reddy, Q.T. Hoai Ta, G. Namgung, E. Cho, and J.S. Noh, Facile growth of novel morphology correlated Ag/Co-doped ZnO nanowire/flake-like composites for superior photoelectrochemical water splitting activity, Ceram. Int., 45(2019), No. 6, p. 6985. doi: 10.1016/j.ceramint.2018.12.198
    [62]
    S.B. Wang, X.W. Zhang, S. Li, Y. Fang, L. Pan, and J.J. Zou, C-doped ZnO ball-in-ball hollow microspheres for efficient photocatalytic and photoelectrochemical applications, J. Hazard. Mater., 331(2017), p. 235. doi: 10.1016/j.jhazmat.2017.02.049
    [63]
    S.S. Kalanur, I.H. Yoo, and H. Seo, Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity, Electrochim. Acta, 254(2017), p. 348. doi: 10.1016/j.electacta.2017.09.142
    [64]
    Y. Liu, J. Li, W.Z. Li, Y.H. Yang, Y.M. Li, and Q.Y. Chen, Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping, J. Phys. Chem. C, 119(2015), No. 27, p. 14834. doi: 10.1021/acs.jpcc.5b00966
    [65]
    A.K. Vishwakarma, P. Tripathi, A. Srivastava, A.S.K. Sinha, and O.N. Srivastava, Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route, Int. J. Hydrogen Energy, 42(2017), No. 36, p. 22677. doi: 10.1016/j.ijhydene.2017.07.153
    [66]
    Z.B. Dong, D.Y. Ding, T. Li, and C.Q. Ning, Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation, Appl. Surf. Sci., 436(2018), p. 125. doi: 10.1016/j.apsusc.2017.12.030
    [67]
    D. Kim, S. Fujimoto, P. Schmuki, and H. Tsuchiya, Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys, Electrochem. Commun., 10(2008), No. 6, p. 910. doi: 10.1016/j.elecom.2008.04.001
    [68]
    M. Mollavali, C. Falamaki, and S. Rohani, Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications, Int. J. Hydrogen Energy, 43(2018), No. 19, p. 9259. doi: 10.1016/j.ijhydene.2018.03.102
    [69]
    M. Szkoda, K. Siuzdak, A. Lisowska-Oleksiak, J. Karczewski, and J. Ryl, Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays, Electrochem. Commun., 60(2015), p. 212. doi: 10.1016/j.elecom.2015.09.013
    [70]
    P. Parnicka, P. Mazierski, W. Lisowski, T. Klimczuk, J. Nadolna, and A. Zaleska-Medynska, A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation, Results Phys., 12(2019), p. 412. doi: 10.1016/j.rinp.2018.11.073
    [71]
    M.L. Wang, X.X. Wang, J. Lin, X.W. Ning, X.J. Yang, X.H. Zhang, and J.L. Zhao, Preparation and photoluminescence properties of Eu3+-doped ZrO2 nanotube arrays, Ceram. Int., 41(2015), No. 7, p. 8444. doi: 10.1016/j.ceramint.2015.03.046
    [72]
    M.H Xia, L.L. Huang, Y.B. Zhang, and Y.Q. Wang, Enhanced photocatalytic activity of La3+-doped TiO2 nanotubes with full wave-band absorption, J. Electron. Mater., 47(2018), No. 9, p. 5291. doi: 10.1007/s11664-018-6412-5
    [73]
    M. Altomare, K. Lee, M.S. Killian, E. Selli, and P. Schmuki, Ta-doped TiO2 nanotubes for enhanced solar-light photoelectrochemical water splitting, Chem. Eur. J., 19(2013), No. 19, p. 5841. doi: 10.1002/chem.201203544
    [74]
    C. Das, P. Roy, M. Yang, H. Jha, and P. Schmuki, Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting, Nanoscale, 3(2011), No. 8, p. 3094. doi: 10.1039/c1nr10539f
    [75]
    Z.B. Dong, D.Y. Ding, T. Li, and C.Q. Ning, Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting, Appl. Surf. Sci., 443(2018), p. 321. doi: 10.1016/j.apsusc.2018.03.031
    [76]
    J.L. Zhao, X.X. Wang, Y.R. Kang, X.W. Xu, and Y.X. Li, Photoelectrochemical activities of W-doped titania nanotube arrays fabricated by anodization, IEEE Photonics Technol. Lett., 20(2008), No. 14, p. 1213. doi: 10.1109/LPT.2008.925529
    [77]
    J.D. Yu, Z. Wu, C. Gong, W. Xiao, L. Sun, and C.J. Lin, Fe3+-doped TiO2 nanotube arrays on Ti–Fe alloys for enhanced photoelectrocatalytic activity, Nanomaterials, 6(2016), No. 6, p. 107. doi: 10.3390/nano6060107
    [78]
    A. Zaffora, M. Santamaria, F. Di Franco, H. Habazaki, and F. Di Quarto, Photoelectrochemical evidence of nitrogen incorporation during anodizing sputtering-deposited Al–Ta alloys, Phys. Chem. Chem. Phys., 18(2016), No. 1, p. 351. doi: 10.1039/C5CP04347F
    [79]
    G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, and C.A. Grimes, Vertically oriented Ti–Fe–O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis, Nano Lett., 7(2007), No. 8, p. 2356. doi: 10.1021/nl0710046
    [80]
    G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, and C.A. Grimes, P-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation, Nano Lett., 8(2008), No. 7, p. 1906. doi: 10.1021/nl080572y
    [81]
    N.T.C. Oliveira, A.C. Guastaldi, S. Piazza, and C. Sunseri, Photo-electrochemical investigation of anodic oxide films on cast Ti–Mo alloys. I. Anodic behaviour and effect of alloy composition, Electrochim. Acta, 54(2009), No. 5, p. 1395. doi: 10.1016/j.electacta.2008.08.074
    [82]
    P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, Oxide nanotubes on Ti–Ru alloys: Strongly enhanced and stable photoelectrochemical activity for water splitting, J. Am. Chem. Soc., 133(2011), No. 15, p. 5629. doi: 10.1021/ja110638y
    [83]
    T. Cottineau, N. Béalu, P.A. Gross, S.N. Pronkin, N. Keller, E.R. Savinova, and V. Keller, One step synthesis of niobium doped titania nanotube arrays to form (N, Nb) co-doped TiO2 with high visible light photoelectrochemical activity, J. Mater. Chem. A, 1(2013), No. 6, p. 2151. doi: 10.1039/C2TA00922F
    [84]
    M. Mollavali, C. Falamaki, and S. Rohani, Preparation of multiple-doped TiO2 nanotube arrays with nitrogen, carbon and nickel with enhanced visible light photoelectrochemical activity via single-step anodization, Int. J. Hydrogen Energy, 40(2015), No. 36, p. 12239. doi: 10.1016/j.ijhydene.2015.07.069
    [85]
    X.Y. Ma, Z.R. Sun, and X. Hu, Synthesis of tin and molybdenum co-doped TiO2 nanotube arrays for the photoelectrocatalytic oxidation of phenol in aqueous solution, Mater. Sci. Semicond. Process., 85(2018), p. 150. doi: 10.1016/j.mssp.2018.05.026
    [86]
    H. Yoo, Y.W. Choi, and J. Choi, Ruthenium oxide-doped TiO2 nanotubes by single-step anodization for water-oxidation applications, ChemCatChem, 7(2015), No. 4, p. 643. doi: 10.1002/cctc.201402787
    [87]
    H. Ali, N. Ismail, M. Mekewi, and A. Hengazy, Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion, J. Solid State Electrochem., 19(2015), No. 10, p. 3019. doi: 10.1007/s10008-015-2919-3
    [88]
    H. Yoo, K. Oh, Y.R. Lee, K.H. Row, G. Lee, and J. Choi, Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting, Int. J. Hydrogen Energy, 42(2017), No. 10, p. 6657. doi: 10.1016/j.ijhydene.2016.12.018
    [89]
    Y.W. Choi, S. Kim, M. Seong, H. Yoo, and J. Choi, NH4-doped anodic WO3 prepared through anodization and subsequent NH4OH treatment for water splitting, Appl. Surf. Sci., 324(2015), p. 414. doi: 10.1016/j.apsusc.2014.10.059
    [90]
    H. Bemana and S. Rashid-Nadimi, Effect of sulfur doping on photoelectrochemical performance of hematite, Electrochim. Acta, 229(2017), p. 396. doi: 10.1016/j.electacta.2017.01.150
    [91]
    Y.Z. Chen, A.X. Li, Q. Li, X.M. Hou, L.N. Wang, and Z.H. Huang, Facile fabrication of three-dimensional interconnected nanoporous N-TiO2 for efficient photoelectrochemical water splitting, J. Mater. Sci. Technol., 34(2018), No. 6, p. 955. doi: 10.1016/j.jmst.2017.07.010
    [92]
    J. Georgieva, E. Valova, S. Armyanov, D. Tatchev, S. Sotiropoulos, I. Avramova, N. Dimitrova, A. Hubin, and O. Steenhaut, A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance, Appl. Surf. Sci., 413(2017), p. 284. doi: 10.1016/j.apsusc.2017.04.055
    [93]
    Y.Y. Liu, Y. Li, W.Z. Li, S. Han, and C.J. Liu, Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light, Appl. Surf. Sci., 258(2012), No. 12, p. 5038. doi: 10.1016/j.apsusc.2012.01.080
    [94]
    D. Ding, B. Zhou, S.R. Liu, G.J. Zhu, X.W. Meng, J.D. Yang, W.Y. Fu, and H.B. Yang, A facile approach for photoelectrochemical performance enhancement of CdS QD-sensitized TiO2 via decorating {001} facet-exposed nano-polyhedrons onto nanotubes, RSC Adv., 7(2017), No. 59, p. 36902. doi: 10.1039/C7RA05772E
    [95]
    G.M. Wang, X.Y. Yang, F. Qian, J.Z. Zhang, and Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation, Nano Lett., 10(2010), No. 3, p. 1088. doi: 10.1021/nl100250z
    [96]
    C.J. Liu, Y.H. Yang, W.Z. Li, J. Li, Y.M. Li, Q.L. Shi, and Q.Y. Chen, Highly efficient photoelectrochemical hydrogen generation using ZnxBi2S3+x sensitized platelike WO3 photoelectrodes, ACS Appl. Mater. Interfaces, 7(2015), No. 20, p. 10763. doi: 10.1021/acsami.5b00830
    [97]
    Y.M. Zhu, R.L. Wang, W.P. Zhang, H.Y. Ge, and L. Li, CdS and PbS nanoparticles co-sensitized TiO2 nanotube arrays and their enhanced photoelectrochemical property, Appl. Surf. Sci., 315(2014), p. 149. doi: 10.1016/j.apsusc.2014.07.116
    [98]
    Y.M. Xin, Z.Z. Li, W.L. Wu, B.H. Fu, and Z.H. Zhang, Pyrite FeS2 sensitized TiO2 nanotube photoanode for boosting near-infrared light photoelectrochemical water splitting, ACS Sustainable Chem. Eng., 4(2016), No. 12, p. 6659. doi: 10.1021/acssuschemeng.6b01533
    [99]
    K. Sekizawa, S. Sato, T. Arai, and T. Morikawa, Solar-driven photocatalytic CO2 reduction in water utilizing a ruthenium complex catalyst on p-type Fe2O3 with a multiheterojunction, ACS Catal., 8(2018), No. 2, p. 1405. doi: 10.1021/acscatal.7b03244
    [100]
    F. Ronconi, Z. Syrgiannis, A. Bonasera, M. Prato, R. Argazzi, S. Caramori, V. Cristino, and C.A. Bignozzi, Modification of nanocrystalline WO3 with a dicationic perylene bisimide: Applications to molecular level solar water splitting, J. Am. Chem. Soc., 137(2015), No. 14, p. 4630. doi: 10.1021/jacs.5b01519
    [101]
    M. Yamamoto, L. Wang, F.S. Li, T. Fukushima, K. Tanaka, L.C. Sun, and H. Imahori, Visible light-driven water oxidation using a covalently-linked molecular catalyst-sensitizer dyad assembled on a TiO2 electrode, Chem. Sci., 7(2016), No. 2, p. 1430. doi: 10.1039/C5SC03669K
    [102]
    A.Y. Pang, L.C. Xia, H.Y. Luo, Y.F. Li, and M.D. Wei, Highly efficient indoline dyes co-sensitized solar cells composed of titania nanorods, Electrochim. Acta, 94(2013), p. 92. doi: 10.1016/j.electacta.2013.01.128
    [103]
    M. Pastore and F. De Angelis, First-principles modeling of a dye-sensitized TiO2/IrO2 photoanode for water oxidation, J. Am. Chem. Soc., 137(2015), No. 17, p. 5798. doi: 10.1021/jacs.5b02128
    [104]
    Y.C. Qiu, Z.H. Pan, H.N. Chen, D.Q. Ye, G. Lin, Z.Y. Fan, and S.H. Yang, Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting, Sci. Bull., 64(2019), No. 18, p. 1348. doi: 10.1016/j.scib.2019.07.017
    [105]
    C.V. Reddy, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, and D.D. Dionysiou, Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting–A review, Int. J. Hydrogen Energy, 2019, https://doi.org/10.1016/j.ijhydene.2019.02.109.
    [106]
    H.B. Liu, J.L. Xu, Y.J. Li, and Y.L. Li, Aggregate nanostructures of organic molecular materials, Acc. Chem. Res., 43(2010), No. 12, p. 1496. doi: 10.1021/ar100084y
    [107]
    J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, and L. Schmidt-Mende, Nanostructured organic and hybrid solar cells, Adv. Mater., 23(2011), No. 16, p. 1810. doi: 10.1002/adma.201003991
    [108]
    V.M. Agranovich, Y.N. Gartstein, and M. Litinskaya, Hybrid resonant organic–inorganic nanostructures for optoelectronic applications, Chem. Rev., 111(2011), No. 9, p. 5179. doi: 10.1021/cr100156x
    [109]
    Y.Z. Chen, A.X. Li, X.Q. Yue, L.N. Wang, Z.H. Huang, F.Y. Kang, and A.A. Volinsky, Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting, Nanoscale, 8(2016), No. 27, p. 13228. doi: 10.1039/C5NR07893H
    [110]
    Y.Z. Chen, A.X. Li, M. Jin, L.N. Wang, and Z.H. Huang, Inorganic nanotube/organic nanoparticle hybrids for enhanced photoelectrochemical properties, J. Mater. Sci. Technol., 33(2017), No. 7, p. 728. doi: 10.1016/j.jmst.2016.08.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(2209) PDF Downloads(84) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return