Cite this article as:

Research Article

Simulation on scrap melting behavior and carbon diffusion under natural convection

+ Author Affiliations
  • Available online: 11 February 2020
  • A 3-D model applying the temperature and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection. The simulated results agreed reasonably well with the experimental ones. The scrap melting was subdivided into four stages of "① formation of a solidified layer; ② rapid melting of the solidified layer; ③ carburization; and ④ carburization + normal melting". The carburization stage could not be ignored at low temperatures as the carburization time for the sample investigated was 214 s at 1573K compared to 12 s at 1723K. The thickness of the boundary layer with significant concentration difference at 1573K increased from 130 μm at 5 s to 140 μm at 60 s. The maximum velocity caused by natural convection decreased from 0.029 m·s-1 at 5 s to 0.009 m·s-1 at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.
  • 加载中
  • This work was supported by the National Natural Science Foundation of China (No. 51674022 and No. 51734003) and the Key projects of NSFC (U1960201).

     

  • [1] F. Oeters and R.M. Ni, Metallurgy of Steelmaking, The Metallurgical Industry Press, Beijing, 1997, p. 479.
    [2] R.D. Pehlke, P.D. Goodell, and R.W. Dunlap, Kinetics of steel dissolution in molten pig iron, Trans. Metall. Soc. ALME, 233(1965), p. 1420.
    [3] R.I.L. Guthrie and P. Stubbs, Kinetics of scrap melting in baths of molten pig iron, Can. Metall. Q., 12(1973), No. 4, p. 465.
    [4] K. Mori and H. Nomura, Study on the rate of scrap melting in the steelmaking process, Tetsu-to-Hagané, 55(1969), No. 5, p. 347.
    [5] E.M. Gol'dfarb and B.I. Sherstov, Heat and mass transfer when melting scrap in an oxygen converter, J. Eng. Phys., 18(1970), No. 3, p. 342.
    [6] W.P. Daniel, Coupled heat conduction and multiphase change problem accounting for thermal contact resistance, Int. Heat Mass Transf., 104(2017), p. 595.
    [7] A.K. Shukla, B. Deo, and D.G.C. Robertson, Scrap dissolution in molten iron containing carbon for the case of coupled heat and mass transfer control, Metall. Mater. Trans.B, 44(2013), No. 6, p. 1407.
    [8] Y.K. Wu and M. Lacroix, Numerical simulation of the melting of scrap metal in a circular furnace, Int. Commun. Heat Mass Transf., 22(1995), No. 4, p. 517.
    [9] K. Isobe, H. Maede, K. Ozawa, K. Umezawa, and C. Saito, Analysis of the scrap melting rate in high carbon molten iron, Tetsu-to-Hagané, 76(1990), No. 11, p. 2033.
    [10] A. Kruskopf and S. Louhenkilpi, 1-dimensional scrap melting model for steel converter (BOF),[in] Proceedings of the METEC&2nd ESTAD, Düsseldorf, Germany, 2015, p. 15.
    [11] A. Kruskopf, Multiphysical Modeling Approach for Basic Oxygen Steelmaking Process[Dissertation], Aalto University, Finland, 2018, p. 12.
    [12] A. Kruskopf and V.V. Visuri, A gibbs energy minimization approach for modeling of chemical reactions in a basic oxygen furnace, Metall. Mater. Trans.B, 48B (2017), p. 3281.
    [13] S. Deng, A.J. Xu, G. Yang, and H.B. Wang, Analyses and calculation of steel scrap melting in a multifunctional hot metal ladle, Steel Res. Int., 90(2018), p. 1.
    [14] H.P. Sun, Y.C. Liu, C.C. Lin, and L.U. Muh-Jung, Experimental observation of spherical scrap melting in hot metal,[in] International Congress on the Science&Technology of Steelmaking, Beijing, China, 2015, p. 136.
    [15] F.M. Penz, J. Schenk, and R. Ammer, Diffusive steel scrap melting in carbon-saturated hot metal-phenomenological investigation at the solid-liquid interface, Mater., 12(2019), No. 8, p. 1358.
    [16] J. Dongik, K. Yumkyum, S. Minsoo, and L. Joonho, Kinetics of carbon dissolution of coke in molten iron, Metall. Mater. Trans.B, 43(2012), No. 6, p. 1308.
    [17] Fluent, ANSYS Fluent Theory Guide, Release 15.0 ed., ANSYS Inc., Canonsburg, PA, 2013.
    [18] J.X. Chen, Metallurgy of Iron and Steel (Steelmaking), The Metallurgical Industry Press, Beijing, 2012, p. 174.
    [19] J. Szekely, Y.K. Chuang, and J.W. Hlinka, The melting and dissolution of low-carbon steels in iron-carbon melts, Metall. Mater. Trans.A, 3(1972), No. 11, p. 2825.
    [20] Y.U. Kim and R. Pehlke, Mass transfer during dissolution of a solid into liquid in the iron-carbon system, Metall. Mater. Trans.A, 5(1974), No. 12, p. 2527.
    [21] M. Kosaka and S. Minowa, Mass-transfer from solid metal cylinder into liquid metal, Tetsu-to-Hagane, 52(1966), No. 12, p. 1748.
    [22] M. Kosaka and S. Minowa, Mass-transfer from graphite cylinder into liquid Fe-C alloy, Tetsu-to-Hagane, 53(2010), No. 13, p. 1467.
    [23] K. Wu, Principle of Metallurgical Transmission, Beijing University Press, Beijing, 2016, p. 142.
    [24] J.K. Wright, Steel dissolution in quiescent and gas stirred Fe/C melts, Metall. Mater. Trans.B, 20(1989), No. 3, p. 363.
    [25] M. Gao, S.F. Yang and Y.L. Zhang, Experimental study on mass transfer during scrap melting in the steelmaking process, Ironmak. Steelmak.,(2019), DOI: 10.1080/03019233.2019.1659003.
    [26] H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Gas-liquid mass transfer and flow phenomena in a peirce-smith converter:a numerical model study, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1092.
    [27] Z.Y. Liu, Y.P. Bao, M.Wang, X. Li, and F.Z. Zeng, Austenite grain growth of medium carbon alloy steel with aluminum additions during heating process, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 282.
    [28] V. Dakre, D.R. Peshwe, S.U. Pathak, and A. Likhite, Effect of austenitization temperature on microstructure and mechanical properties of low carbon equivalent carbidic austempered ductile iron, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 770.
    [29] G.S Wei, R. Zhu, T.P Tang, and K. Dong, Study on the melting characteristics of steel scrap in molten steel, Ironmak. Steelmak., 46(2019), p. 1.
  • [1] Jing Ma,Gui-qin Fu,Wei Li, and Miao-yong Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1914-6
    [2] Zhuo Chen and Hou-fa Shen, Simulation of macrosegregation in a 36-t steel ingot using a multiphase model, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1875-9
    [3] Wang Wei,Hong-rui Yue, and Xiang-xin Xue, Diffusion coefficient of Ti4+ in calcium ferrite/calcium titanate diffusion couple, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2057-5
    [4] Yi-ru Yang,Qi-peng Bao,Lei Guo,Zhe Wang, and Zhan-cheng Guo, Numerical simulation of flash reduction process in a drop tube reactor with variable temperature, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2210-1
    [5] Yu-kun Huo,Li-hua Zhao,Hang-hang An,Min Wang, and Chang-dong Zou, Model prediction of the effect of in-mold electromagnetic stirring on negative segregation under bloom surface, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1906-6
    [6] Yuri-Mikhailovich Grishin, Long Miao, Lev-Alekseevich Borisov, Nikolay-Mikhailovich Serykh, and  Alexey-Yurievich Kulagin, Applications of two electric arc plasma torches for the beneficiation of natural quartz, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1734-8
    [7] Hong-liang Zhao, Xing Zhao, Liang-zhao Mu, Li-feng Zhang, and  Li-qiang Yang, Gas-liquid mass transfer and flow phenomena in a peirce-smith converter: A numerical model study, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1831-8
    [8] Evgeniy Nikolaevich Selivanov, Kirill Vladimirovich Pikulin, Lyudmila Ivanovna Galkova, Roza Iosifovna Gulyaeva, and  Sofia Aleksandrovna Petrova, Kinetics and mechanism of natural wolframite interactions with sodium carbonate, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1857-y
    [9] Zhuo Yi, Wen-zhi Fu, Ming-zhe Li, Rui Li, Liang Zhao, and  Li-yan Wang, Numerical simulation and experimental verification of a novel double-layered split die for high-pressure apparatus used for synthesizing superhard materials, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1747-3
    [10] Yi Li, Ming-zhe Li, and  Kai Liu, Influence of a multi-step process on the thickness reduction error of sheet metal in a flexible rolling process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1711-2
    [11] Er-hu Qu, Ming-zhe Li, and  Rui Li, Improving effect on forming quality and accuracy using a polyurethane board positioning/resetting the discrete steel pad in multi-point forming, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1752-6
    [12] Takehito Hiraki, Yuichi Maruyama, Yuta Suzuki, Satoshi Itoh, and  Tetsuya Nagasaka, Up-grading of natural ilmenite ore by combining oxidation and acid leaching, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1620-9
    [13] Miao Wang, Wen-xian Wang, Hong-sheng Chen, and  Yu-li Li, Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1580-0
    [14] Ying Li, Wen-zhi Fu, Ming-zhe Li, Xiao-dong Liu, Shuo Sun, and  Zhuo Yi, Influence of deformation path on the forming effect in a multistep flexible rolling process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1669-5
    [15] Wen-rui Wang, Hui-fa Xie, Lu Xie, Han-lin Li, Xiao Yang, and  Yi-nan Shen, Anti-penetration performance of high entropy alloy-ceramic gradient composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1685-5
    [16] Zi-qiang Pi, Xin Lu, Yuan Wu, Lu-ning Wang, Cheng-chang Jia, Xuan-hui Qu, Wei Zheng, Li-zhi Wu, and  Qing-li Shao, Simulation of jet-flow solid fraction during spray forming, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1448-8
    [17] Bing Ni, Tao Zhang, Hai-qi Ni, and  Zhi-guo Luo, Mechanism and simulation of droplet coalescence in molten steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1517-z
    [18] Aliakbar Ghadi, Hassan Saghafian, Mansour Soltanieh, and  Zhi-gang Yang, Diffusion mechanism in molten salt baths during the production of carbide coatings via thermal reactive diffusion, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1538-7
    [19] Zhong-qing Liu, Jian Zheng, Yi Wang, and  Xu Liu, Selective Reduction of Carbon Dioxide into Amorphous Carbon over Activated Natural Magnetite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2034-z
    [20] Tao Zhang, Jian Yang, Gang-jun Xu, Hong-jun Liu, Jun-jun Zhou, and  Wei Qin, Effects of Operation Parameters on Flow Field in Slab Continuous Casting Mold with Narrow Width, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1988-1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(812) PDF downloads(7) Cited by()

Proportional views

Simulation on scrap melting behavior and carbon diffusion under natural convection

  • Corresponding author:

    Yan-ling Zhang    E-mail: zhangyanling@metall.ustb.edu.cn

  • 1) State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
  • 2) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract: A 3-D model applying the temperature and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection. The simulated results agreed reasonably well with the experimental ones. The scrap melting was subdivided into four stages of "① formation of a solidified layer; ② rapid melting of the solidified layer; ③ carburization; and ④ carburization + normal melting". The carburization stage could not be ignored at low temperatures as the carburization time for the sample investigated was 214 s at 1573K compared to 12 s at 1723K. The thickness of the boundary layer with significant concentration difference at 1573K increased from 130 μm at 5 s to 140 μm at 60 s. The maximum velocity caused by natural convection decreased from 0.029 m·s-1 at 5 s to 0.009 m·s-1 at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.

Acknowledgements  This work was supported by the National Natural Science Foundation of China (No. 51674022 and No. 51734003) and the Key projects of NSFC (U1960201).
Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return