Cite this article as:

Research Article

Material flow behavior and microstructure evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy

+ Author Affiliations
  • Available online: 11 February 2020
  • Material flow and microstructure evolution during refill friction stir spot welding of alclad 2A12-T4 aluminium alloy are experimentally investigated using the stop-action technique. There are two material flow components, i.e., the inward or outward-directed spiral flow on the horizontal plane and the upward or downward-directed flow on the vertical plane. In the plunge stage, the flowing of plasticized metal into the cavity is similar to a stack where the upper layer is pushed by the lower layer. While in the refill stage, such a process reverses. Therefore, the vertical plasticized metal flow between adjacent layers is unobvious. The welding leads to coarsening of S in the thermo-mechanically affected zone and diminishing of S in the stir zone. Continuous dynamic recrystallization causes formation of fine equiaxed grains in the stir zone, while this process occurs more difficult in the thermo-mechanically affected zone due to the lower magnitude of deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, leading to high low-angle grain boundaries fraction in this zone.
  • 加载中
  • The research was sponsored by the National Science and Technology Major Project (No. 2017ZX04005001) and the Key Research & Development program of Shandong Province (2018GGX103053).

     

  • [1] G.H. Li, L. Zhou, W.L. Zhou, X.G. Song, and Y.X. Huang, Influence of dwell time on microstructure evolution and mechanical properties of dissimilar friction stir spot welded aluminum-copper metals, J. Mater. Res. Technol., 8(2019), No. 3, p. 2613.
    [2] R.R. Patil, C.J.K.A. Tilak, and V. Srivastava, Minimising electrode wear in resistance spot welding of aluminium alloys, Sci. Technol. Weld. Join., 16(2011), No. 6, p. 509.
    [3] Z. Xu, Z. Li, S. Ji, and L. Zhang, Refill friction stir spot welding of 5083-O aluminum alloy, J. Mater. Sci. Technol., 34(2018), No. 5, p, 878.
    [4] U.F.H. Suhuddin, V. Fischer, and J.F. dos Santos, The thermal cycle during the dissimilar friction spot welding of aluminum and magnesium alloy, Scr. Mater., 68(2013), No. 1, p. 87.
    [5] Y.X. Huang, B. Han, S.X. Lv, J.C. Feng, H.J. Liu, J.S. Leng, and Y. Li, Interface behaviours and mechanical properties of filling friction stir weld joining AA 2219, Sci. Technol. Weld. Join., 17(2012), No. 3, p. 225.
    [6] M.D. Tier, T.S. Rosendo, J.F.D. Santos, N. Huber, J.A. Mazzaferro, C.P. Mazzaferro, and T.R. Strohaecker, The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds, J. Mater. Process. Technol., 213(2013), No. 6, p. 997.
    [7] Z. Shen, X. Yang, Z. Zhang, L. Cui, and T. Li, Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints, Mater. Des., 44(2013), p. 476.
    [8] T. Rosendo, B. Parra, M.A.D. Tier, A.A.M. da Silva, J.F. dos Santos, T.R. Strohaecker, and N.G. Alcântara, Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy, Mater. Des., 32(2011), p. 1094.
    [9] J.Y. Cao, M. Wang, L. Kong, and L.J. Guo, Hook formation and mechanical properties of friction spot welding in alloy 6061-T6, J. Mater. Process. Technol., 230(2016), p. 254.
    [10] Y.Q. Zhao, H.J. Liu, S.X. Chen, Z. Lin, and J.C. Hou, Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy, Mater. Des., 62(2014), p. 40.
    [11] P.B. Prangnell and C.P. Heason, Grain structure formation during friction stir welding observed by the'stop action technique', Acta. Mater., 53(2005), No. 11, p. 3179.
    [12] J. Shen, S.B.M. Lage, U.F.H. Suhuddin, C. Bolfarini, and J.F.D. Santos, Texture development and material flow behavior during refill friction stir spot welding of AlMgSc, Metall. Mater. Trans. A, 49(2018), No. 1, p. 241.
    [13] J.Y. Cao, M. Wang, L. Kong, Y.H. Yin, and L.J. Guo, Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061-T6, Int. J. Adv. Manuf. Technol., 89(2016), No. 5-8, p. 1.
    [14] S.T. Amanciofilho, A.P.C. Camillo, S.J.F. Dos, S.E. Kury, and N.G.A. Machado, Preliminary investigation of the microstructure and mechanical behaviour of 2024 aluminium alloy friction spot welds, Mater. Trans., 52(2011), No. 5, p. 985.
    [15] Y.C. Lin, Y.C. Xia, and Y.Q. Jiang, Precipitation in Al-Cu-Mg alloy during creep exposure, Mater. Sci. Eng. A, 556(2012), p. 796.
    [16] S.C. Wang, M.J. Starink, and N. Gao, Precipitation hardening in Al-Cu-Mg alloys revisited, Scr. Mater., 54(2006), No. 2, p. 287.
    [17] G.R. Ebrahimi and H.R. Ezatpour, Effect of precipitation on the warm deformation behavior of AA2024 alloy, Mater. Sci. Eng. A, 681(2017), p. 10.
    [18] W. Wu, Y. Wang, J. Wang, and S. Wei, Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy, Mater. Sci. Eng. A, 608(2014), p. 190.
    [19] M.J. Starink, N. Gao, L. Davin, J. Yan, and A. Cerezo, Room temperature precipitation in quenched Al-Cu-Mg alloys:a model for the reaction kinetics and yield strength development, Philos. Mag., 85(2005), No. 13, p. 1395.
    [20] C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-Cottignies, Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta. Mater., 53(2005), No. 8, p. 2447.
    [21] S. Cheng, Y.H. Zhao, Y.T. Zhu, and E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation, Acta. Mater., 55(2007), No. 17, p. 5822.
    [22] G. Avramovic-Cingara, D.D. Perovic, and H.J. Mcqueen, Hot deformation mechanisms of a solution-treated Al-Li-Cu-Mg-Zr alloy, Metal. Mater. Trans. A, 27(1996), No. 11, p. 3478.
    [23] A. Gerlich, P. Su, M. Yamamoto, and T.H. North, Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy, J. Mater. Sci., 42(2007), p. 5589.
    [24] M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J. H. Driver, Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy, Scr. Mater., 52(2005), No. 8, p. 693.
    [25] K.V. Jata and S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scr. Mater., 43(2000), No. 8, p. 743.
    [26] J. Han, J. Sun, T. Wen, and F. Guo, Analysis of continuous recrystallization (sub) grain rotation behavior in Pb-free solder bumps under a 0.1μm/s shear rate, J. Mater. Sci. Mater. Electron., 29(2018), No. 13, p. 10992.
    [27] J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta. Mater., 51(2003), No. 3, p. 713.
  • [1] Lei-ming Wang,Sheng-hua Yin, and Ai-xiang Wu, Visualization of flow behavior in ore-segregated packed beds with fine interlayers, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2059-3
    [2] Mohsen Hajizadeh,Sajjad Emami, and Tohid Saeid, Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2001-8
    [3] Shahin Arshadi Rastabi and Masoud Mosallaee, Effect of multi-pass friction stir processing and Mg addition on microstructure and tensile properties of Al-1050 alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2074-4
    [4] Rakesh B. Nair,H.S. Arora, and Harpreet Singh Grewal, Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2000-9
    [5] En-dian Fan,Shi-qi Zhang,Dong-han xie,Qi-yue Zhao,Xiao-gang Li, and Yun-hua Huang, Effect of nanosized NbC precipitates on hydrogen induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2167-0
    [6] Chellaganesh Durai,M. Adam Khan,J. T. Winowlin Jappes,Nouby M. Ghazaly, and P. Madindwa Mashinini, Solid particle erosion studies on thermally deposited alumina–titania coatings over aluminium alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2099-8
    [7] Quan-qing Zeng,Song-sheng Zeng, and Dong-yao Wang, Stress-corrosion behavior and characteristics of the friction stir welding of an AA2198-T34 alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1924-4
    [8] Hai-feng Zhang,Li Zhou,Wen-lin Li,Gao-hui Li,Yi-tang Tang,Ning Guo, and Ji-cai Feng, Effect of tool plunge depth on the microstructure and fracture behavior of AZ91 magnesium alloy refill friction stir spot welded joints, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2044-x
    [9] Yu-peng Li, Da-qian Sun, Wen-biao Gong, and  Liang Liu, Effects of postweld aging on the microstructure and properties of bobbin tool friction stir-welded 6082-T6 aluminum alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1800-2
    [10] M. Alipour Behzadi, Khalil Ranjbar, R. Dehmolaei, and  E. Bagherpour, Friction-stir-welded overaged 7020-T6 alloy joint: an investigation on the effect of rotational speed on the microstructure and mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1770-4
    [11] Semih Mahmut Aktarer, Dursun Murat Sekban, Tevfik Kucukomeroglu, and  Gencaga Purcek, Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1783-z
    [12] Ghasem Jamali, Salman Nourouzi, and  Roohollah Jamaati, Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1806-9
    [13] Amir Hossein Baghdadi, Zainuddin Sajuri, Nor Fazilah Mohamad Selamat, Mohd Zaidi Omar, Yukio Miyashita, and  Amir Hossein Kokabi, Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1834-5
    [14] Amirhossein Moghanian, Moslem Paidar, Seyyed Salman Seyedafghahi, and  Olatunji Oladimeji Ojo, Friction stir welding of pure magnesium and polypropylene in a lap-joint configuration:Microstructure and mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1784-y
    [15] M. H. Farshidi, M. Rifai, and  H. Miyamoto, Microstructure evolution of a recycled Al-Fe-Si-Cu alloy processed by tube channel pressing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1668-6
    [16] Ze-long Wang, Zhen-tai Zheng, Li-bing Zhao, Yun-feng Lei, and  Kun Yang, Microstructure evolution and nucleation mechanism of Inconel 601H alloy welds by vibration-assisted GTAW, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1627-2
    [17] Hamed Jamshidi Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1682-8
    [18] Ji-hong Dong, Chong Gao, Yao Lu, Jian Han, Xiang-dong Jiao, and  Zhi-xiong Zhu, Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024-T3 aluminum alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1392-7
    [19] Xin-bo Liu, Feng-bin Qiao, Li-jie Guo, and  Xiong-er Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1391-8
    [20] Dong Wu, Jun Shen, Meng-bing Zhou, Liang Cheng, and  Jia-xing Sang, Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1507-1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(759) PDF downloads(7) Cited by()

Proportional views

Material flow behavior and microstructure evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy

  • Corresponding author:

    Li Zhou    E-mail: zhou.li@hit.edu.cn

  • 1) State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
  • 2) Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China

Abstract: Material flow and microstructure evolution during refill friction stir spot welding of alclad 2A12-T4 aluminium alloy are experimentally investigated using the stop-action technique. There are two material flow components, i.e., the inward or outward-directed spiral flow on the horizontal plane and the upward or downward-directed flow on the vertical plane. In the plunge stage, the flowing of plasticized metal into the cavity is similar to a stack where the upper layer is pushed by the lower layer. While in the refill stage, such a process reverses. Therefore, the vertical plasticized metal flow between adjacent layers is unobvious. The welding leads to coarsening of S in the thermo-mechanically affected zone and diminishing of S in the stir zone. Continuous dynamic recrystallization causes formation of fine equiaxed grains in the stir zone, while this process occurs more difficult in the thermo-mechanically affected zone due to the lower magnitude of deformation rate and the pinning action of S precipitates on the dislocations and sub-grain boundaries, leading to high low-angle grain boundaries fraction in this zone.

Acknowledgements  The research was sponsored by the National Science and Technology Major Project (No. 2017ZX04005001) and the Key Research & Development program of Shandong Province (2018GGX103053).
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return