Cite this article as:

Research Article

Experimental and theoretical verification of cations distribution and spin canting effect via structural and magnetic studies of Ni0.6-xZn0.4CoxFe2O4 nanoparticles

+ Author Affiliations
  • Available online: 11 February 2020
  • Nanoparticles of Ni0.6-xZn0.4CoxFe2O4 were prepared by aqueous sol-gel auto-combustion route. Ni-Zn-Ferrite system was doped with Co to improve the magnetic properties for application purposes. Structural determination of the phase and crystallite size were found using X-ray diffraction technique. Spinel cubic (single-phase) nanoparticles were formed at some specific x compositions, while at other compositions partial hematite (α-Fe2O3) secondary phase was formed. The tuned values of saturation magnetization directly depend upon the concentration of hematite phase, at this point the value of magnetic saturation become smaller which causes high spin canting effect resulting in decrease in net magnetic moment of the structure. Further doping of Co2+ ions enhances the magnetic properties due to its high magnetic moment and distributions. To cross-check the experimental findings, theoretical analysis was performed using most suitable proposed cations distribution and it supports well. The observed structural and magnetic findings would contribute effectively in electromagnetic-interference-shielding and magnetic-recording-device applications.
  • 加载中
  • We are very thankful for the financial aid to this work provided by Jaypee University of information Technology, Waknaghat, Solan, H.P., India. We also thank SAIF, Panjab University, Chandigarh for characterized our samples.

     

  • [1] . T. Suzuki, T. Tanaka, and K. Ikemizu, High density recording capability for advanced particulate media, J. Magn. Magn. Mater., 235(2001), p. 159.
    [2] . T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, and G. Kordas, Microwave behavior of ferrites prepared via sol-gel method, J. Magn. Magn. Mater.,46(2002), p. 360.
    [3] . E. Olsen, and J. Thonstad,1999, Nickel ferrite as inert anodes in aluminium electrolysis:Part I Material fabrication and preliminary testing, J. Appl. Electrochem., 29(1999), p. 293.
    [4] . C. O.Augustion, D. Prabhakaran, and L. K. Srinivasan, Fabrication and characterization of NiCr 2 O 4 spinel, J.Mater Sci., 12(1993), p. 383.
    [5] . M. F. Huq, D. K. Saha, R. Ahmed, and Z. H. Mahmood, Ni-Cu-Zn ferrite research:A brief review, J. Sci. Res., 5(2013), p. 215.
    [6] . Gh. R. Amiri, M. H. Yousefi, M. R. Abolhassani, S. Manouchehri, M. H. Keshavarz, and S. Fatahian, Magnetic proprties and microwave absorption in Ni-Zn and Mn-Zn ferrite nanoparticles synthesized by low-temperature solid-state reaction, J. Magn. Magn. Mater., 323(2011), p. 730.
    [7] . M. Mohapatra, and S. Anand, Synthesis and applications of nano-structured iron oxides/hydroxides-a review, Int. J. Eng. Sci. Technol., 2(2010), p. 127.
    [8] . A. Verma, and R. Chatterjee, Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn-Zn and Ni-Zn ferrites synthesized by the citrate precursor technique, J. Magn. Magn. Mater., 306 (2006), p. 313.
    [9] . Y. M. Kwon, M.Y. Lee, M. Mustaqima, C. Liu, and B. W. Lee, Journal of Magnetics 19, (2014), p.34.
    [10] . P. G. Bercoff, and H. R. Bertorello, "Localized canting effect in Zn-substituted Ni ferrites, J. Magn. Magn. Mater., 213(2000), p. 56.
    [11] . P. Lin. Leng, N. M. Goodarz, S. Elias, S. A. Halim, and K. M. Ahmad, Synthesis and Characterization of Ni-Zn Ferrite Nanoparticles (Ni0.25Zn0.75Fe2O4) by Thermal Treatment Method, Advances in Nanoparticles., 2(2013), p. 378.
    [12] . S.Jozef, A. Grusková, M. Ušáková, E. Ušák, J. Šubrt, and J. Lukáč, Substituted Ni-Zn Ferrites For Passive Sensor Applications, Journal of Electrical Engineering., 57, 159 (2006).
    [13] . A. C. F. M. Costa, E. Tortella, M. R. Morelli, and R. H. G. A. Kiminami, Synthesis, microstructure and magnetic properties of Ni-Zn ferrites, J. Magn. Magn. Mater., 256(2003), p. 174.
    [14] . J. B. Da Silva, and N. D. S. Mohallem, Preparation of composites of nickel ferrites dispersed in silica matrix, J. Magn. Magn. Mater., 226(2001), p. 1393.
    [15] . M. Jalaly, M. H. Enayati, and F. Karimzadeh, "Investigation of structural and magnetic properties of nanocrystalline Ni0.3Zn0.7Fe2O4 prepared by high energy ball milling, J. Alloys. Compd., 480(2009), p. 737.
    [16] . M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, and A. C. Başaran, Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route, J. Magn. Magn. Mater., 321(2009), p. 157.
    [17] . M. Damnjanovic, G. Stojanovic, V. Desnica, L. Zivanov, R. Raghavendra, P. Bellew, and N. Mcloughlin, Analysis, design, and characterization of ferrite EMI suppressors, IEEE Transactions on Magnetics., 42(2006), p. 270.
    [18] . A. M. Abdeen, Dielectric behaviour in Ni-Zn ferrites." J. Magn. Magn. Mater., 192(1999), p. 121.
    [19] . S. R. Shannigrahi, K. P. Pramoda, and F. A. A. Nugroho, Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications, J. Magn. Magn. Mater., 324(2012), p. 140.
    [20] . B. P. Rao, and O. F. Caltun, Synthesis and magnetic studies of Ni-Zn ferrite nanoparticles J. Optoelectron. Adv. M., 8(2006), p. 1703.
    [21] . S. L. Pereira, H-D. Pfannes, A. A. Mendes Filho, L. C. B. Pinto, and M. A. Chíncaro, A comparative study of NiZn ferrites modified by the addition of cobalt, Mater. Res., 2(1999), p. 231.
    [22] . L.-Z. Li, L. Peng, X.H. Zhu, and D.Y. Yang, Effects of Cu and Co substitution on the properties of NiZn ferrite thin films, Journal of Electronic Science and Technology., 10(2012), p. 88.
    [23] . E. Rezlescu, L. Sachelarie, P. D. Popa, and N. Rezlescu, Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites, IEEE Transactions on Magnetics 36(2000), p. 3962.
    [24] . X. Shen, Y.X. Wang, Y. A. N. G. Xiang, X. I. A. Yong, J.F. Zhuang, and P.D. Tang, Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials, Transactions of Nonferrous Metals Society of China 19(2009), p. 1161.
    [25] . W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, X., Pu, Y., and Li X. A, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping, J. Alloys. Compds., 784(2019), p. 117.
    [26] . W. Zhang, X. Zhu, L. Wang, X. Xu, Q. Yao, W. Mao, and Li X. A, Study on the Magnetic and Ferroelectric Properties of Bi 0.95 Dy 0.05 Fe 0.95 M 0.05 O 3 (M=Mn, Co) Ceramics, J Supercond Nov Magn., 30(2017), p. 3001.
    [27] . Y. Zhu, C. Quan, Y. Ma, Q. Wang, W. Mao, X. Wang, J. Zhang, Y. Min, J. Yang, Li XA, and W. Huang, Effect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles, Mat Sci Semicon Proc., 57(2017), p. 178.
    [28] . R. Kumar,, H. Kumar, R. R. Singh, and P. B. Barman, Variation in magnetic and structural properties of Co-doped Ni-Zn ferrite nanoparticles:a different aspec, J Sol-Gel Sci Techn., 78(2016), p.566.
    [29] . M.Veverka, Z. Jirák, O. Kaman, K. Knížek, M. Maryško, E. Pollert, K. Závěta, A. Lančok, M. Dlouhá, and S. Vratislav, Distribution of cations in nanosize and bulk Co-Zn ferrites. Nanotechnology 22(2011), p. 345701.
    [30] . E. J. Choi,, A. K. Yang, K. C. Song, D. H. An, B. G. Lee, and K. U.k Kang, Cation distribution and spin-canted structure in cobalt ferrite particles from a cobalt-iron hydroxide carbonate complex, J. Korean. Phys. Soc., 44(2004), p. 1518.
    [31] . M. K. Fayek, A. A. Bahgat, Y. M. Abbas, and L. Moberg, Neutron diffraction and Mossbauer effect study on a cobalt substituted zinc ferrite, J Phys C Solid State Phys., 15(1982), p. 2509.
    [32] . G. A. Sawatzky, F. V. D. Woude, and A. H. Morrish, Mössbauer study of several ferrimagnetic spinels, Phys Rev., 187(1969), p. 747.
    [33] . A. Kumar, P. Mahesh, M. A. Rao, C. Varma, G. S. V. R. K. Choudary, and K. H. Rao, Cation distribution in Co0.7Me0.3Fe2O4 (Me=Zn, Ni and Mn), J. Mod. Phys., 2(2011), p. 1083.
    [34] . S. Prabahar, and M. Dhanam, CdS thin films from two different chemical baths-structural and optical analysis, J. Cryst. Growth., 285(2005), p. 41.
    [35] . A. Xia,, S.i Liu, C. Jin, L. Chen, and Y. Lv, Phase formation and mechanism of saturation magnetization Mater. Lett., 105(2013), p. 199.
    [36] . H. M. Zaki, S. H. Al-Heniti, and T. A. Elmosalami, Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite., J. Alloys Compd., 633(2015), p. 104.
    [37] . M. A. Hakim, S. Kumar Nath, S. S. Sikder, and K. H. Maria, Cation distribution and electromagnetic properties of spinel type Ni-Cd ferrites, J. Phys. Chem. Solids., 74(2013), p. 1316.
    [38] . K. A., Mohammed, A. D. Al-Rawas, A. M. Gismelseed, A. Sellai, H. M. Widatallah, A. Yousif, M. E. Elzain, and M. Shongwe, Infrared and structural studies of Mg1-xZnxFe2O4 ferrites, Physica B., 407(2012), p. 795.
    [39] . R. Sharma, P. Thakur, M. Kumar, N. Thakur, N. S. Negi, P. Sharma, and V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route, J. Alloys Compd., 684(2016), p. 569.
    [40] . M. Houshiar, F. Zebhi, Z. J. Razi, A. Alidoust, and Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods:A comparison study of size, structural, and magnetic properties, J. Magn. Magn. Mater., 371(2014), p. 43.
    [41] . A. Goldman, Modern ferrite technology. Springer Science & Business Media, 2006.
    [42] . X. Shen, Y. Wang, X. Yang, L. Lu, and L. Huang, 0.3-3 GHz magneto-dielectric properties of nanostructured NiZnCo ferrite from hydrothermal process, J. Mater. Sci.:Mater. Electron., 21(2010), p. 630.
    [43] . S. Thakur,, S. C. Katyal, and M. Singh, Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique, J. Magn. Magn. Mater., 321(2009), p. 1.
    [44] . S. S. Nair, M. Mathews, P. A. Joy, S. D. Kulkarni, and M. R. Anantharaman, Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite, J. Magn. Magn. Mater., 269(2004), p. 217.
    [45] . M. Y.. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M. F. Warsi, I. Shakir, M. Asghar, and M. A. Khan, New Mg0.5CoxZn0.5-xFe2O4 nano-ferrites:structural elucidation and electromagnetic behavior evaluation, Curr. Appl. Phys., 14(2014), p. 716.
    [46] . M. Arana, V. Galván, S. E. Jacobo, and P. G. Bercoff, Cation distribution and magnetic properties of LiMnZn ferrites, J. Alloys Compd., 568(2013), p. 5.
    [47] . G, Kumar, J. Shah, R. K. Kotnala, V. P. Singh, G. Garg, S. E. Shirsath, K. M. Batoo, and M. Singh, Superparamagnetic behaviour and evidence of weakening in super-exchange interactions with the substitution of Gd3+ ions in the Mg-Mn nanoferrite matrix, Mater Res Bull., 63(2015), p. 216.
    [48] . N. H. Vasoya, V. K. Lakhani, P. U. Sharma, K. B. Modi, Ravi Kumar, and H. H. Joshi, Study on the electrical and dielectric behaviour of Zn-substituted cobalt ferrialuminates, J Phys-Condens Mat., 18 (2006), p. 8063.
    [49] . V. K.,. Lakhani, T. K. Pathak, N. H. Vasoya, and K. B. Modi, Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates, Solid State Sci., 13(2011), p. 539.
  • [1] Mohammad Sefidmooy Azar,Shahram Raygan, and Saeed Sheibani, Effect of chemical activation process on adsorption of As(V) ion from aqueous solution by mechano-thermally synthesized zinc ferrite nanopowder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1931-5
    [2] A. Brahma Swamulu,S. Venugopal Rao, and G. Krishna Podagatlapalli, Non-spherical aluminum nanoparticles fabricated using picosecond laser ablation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2032-1
    [3] Yan-ping Li,Xue Bian,Yang Liu,Wen-yuan Wu, and Gao-feng Fu, Synthesis and characterization of ceria nanoparticles by complex-precipitation route, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2126-9
    [4] Wang Wei,Hong-rui Yue, and Xiang-xin Xue, Diffusion coefficient of Ti4+ in calcium ferrite/calcium titanate diffusion couple, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2057-5
    [5] Chao Wang,Yu-feng Guo,Shuai Wang,Feng Chen,Yu-jia Tan,Fu-qiang Zheng, and Ling-zhi Yang, Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1858-x
    [6] Xiao-qian Pan,Jian Yang,Joohyun Park, and Hideki Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1973-8
    [7] Hong-liang Zhao,Jing-qi Wang,Feng-qin Liu, and Hong Yong Sohn, Experimental study on flow zone distribution and mixing time in a Peirce-Smith copper converter, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2196-8
    [8] Yuliia G. Chabak,K. Shimizu,Vasily G. Efremenko,Michail A. Golinskyi,Kenta Kusumoto,Vadim I. Zurnadzhy, and Alexey V. Efremenko, Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2135-8
    [9] Xu-yu Zhang,Qian-shuai Wang,Zhong-xian Wu, and Dong-ping Tao, An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1936-0
    [10] Faramarz Kazemi,Farzin Arianpour,Mahdiar Taheri,Ali Saberi, and Hamid Reza Rezaie, Effects of chelating agents on the sol−gel synthesis of nano-zirconia: Comparison of the Pechini and sugar-based methods, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1933-3
    [11] Qi-qiang Mou, Jian-li Li, Qiang Zeng, and  Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1822-9
    [12] C. D. Gómez-Esparza, A. Duarte-Moller, C. López-Díaz de León, R. Martínez-Sánchez, J. F. Hernández-Paz, and  C. A. Rodríguez-González, Influence of ZnO nanoparticles on the microstructure of a CoCrFeMoNi matrix via powder metallurgy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1863-0
    [13] Yong Zhang, Zhao-hui Guo, Zi-yu Han, Xi-yuan Xiao, and  Chi Peng, Feasibility of aluminum recovery and MgAl2O4 spinel synthesis from secondary aluminum dross, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1739-3
    [14] Yang Li, Peng-fei Du, Zhou-hua Jiang, Cong-lin Yao, Lu Bai, Qi Wang, Guang Xu, Chang-yong Chen, Lei Zhang, and  Hua-bing Li, Effects of TiC on the microstructure and formation of acicular ferrite in ferritic stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1845-2
    [15] Peng Fei, Yi Min, Cheng-jun Liu, and  Mao-fa Jiang, Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1723-y
    [16] Tian-xing Lu, Cun-guang Chen, Zhi-meng Guo, Pei Li, and  Ming-xing Guo, Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1889-3
    [17] Qing Zhao, Cheng-jun Liu, Tian-ci Gao, Long-hu Cao, and  Mao-fa Jiang, Growth and aggregation control of spinel by shear-force-based melting modification of stainless steel slag, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1665-9
    [18] Xiao-feng Wang, Ming-xing Guo, Cun-qiang Ma, Jian-bin Chen, Ji-shan Zhang, and  Lin-zhong Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1645-0
    [19] Saeid Mersagh Dezfuli, Ali Shanaghi, and  Saeid Baghshahi, Effect of Al2O3 and Y2O3 on the corrosion behavior of ZrO2-benzotriazole nanostructured coatings applied on AA2024 via a sol-gel method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1688-2
    [20] Shuang Huang, Hua-lan Xu, Sheng-liang Zhong, and  Lei Wang, Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1463-9
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(913) PDF downloads(23) Cited by()

Proportional views

Experimental and theoretical verification of cations distribution and spin canting effect via structural and magnetic studies of Ni0.6-xZn0.4CoxFe2O4 nanoparticles

  • Corresponding author:

    Ragini Raj Singh    E-mail: raginirajsingh@gmail.com

  • Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan-173234, H. P., India

Abstract: Nanoparticles of Ni0.6-xZn0.4CoxFe2O4 were prepared by aqueous sol-gel auto-combustion route. Ni-Zn-Ferrite system was doped with Co to improve the magnetic properties for application purposes. Structural determination of the phase and crystallite size were found using X-ray diffraction technique. Spinel cubic (single-phase) nanoparticles were formed at some specific x compositions, while at other compositions partial hematite (α-Fe2O3) secondary phase was formed. The tuned values of saturation magnetization directly depend upon the concentration of hematite phase, at this point the value of magnetic saturation become smaller which causes high spin canting effect resulting in decrease in net magnetic moment of the structure. Further doping of Co2+ ions enhances the magnetic properties due to its high magnetic moment and distributions. To cross-check the experimental findings, theoretical analysis was performed using most suitable proposed cations distribution and it supports well. The observed structural and magnetic findings would contribute effectively in electromagnetic-interference-shielding and magnetic-recording-device applications.

Acknowledgements  We are very thankful for the financial aid to this work provided by Jaypee University of information Technology, Waknaghat, Solan, H.P., India. We also thank SAIF, Panjab University, Chandigarh for characterized our samples.
Reference (49)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return