Wen-chao He, Cheng-yi Ding, Xue-wei Lv, and Zhi-ming Yan, Oxidation pathway and kinetics of titania slag powders during cooling process in air, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2019-y
Cite this article as:
Wen-chao He, Cheng-yi Ding, Xue-wei Lv, and Zhi-ming Yan, Oxidation pathway and kinetics of titania slag powders during cooling process in air, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2019-y
Research Article

Oxidation pathway and kinetics of titania slag powders during cooling process in air

+ Author Affiliations
  • Available online: 20 February 2020
  • The oxidation pathway and kinetics of titania slag powders in air were analyzed through differential scanning calorimetry (DSC) and thermogravimetry (TG). The oxidation pathway of titania slag powders in air is divided into three stages according to three exothermic peaks and three corresponding mass gain stages displayed in the non-isothermal DSC and TG curves respectively. The isothermal oxidation kinetics of high titania slag powders with different sizes were analyzed through ln-ln analysis method. The entire isothermal oxidation process includes the following two stages. The kinetic mechanism of first stage is described as f(α)=1.77(1-α)[-ln(1-α)]((1.77-1)/1.77),f(α)=1.97(1-a)[-ln(1-a)]((1.97-1)/1.97), and f(α)=1.18(1-α)[-ln(1-α)]((1.18-1)/1.18); whereas the kinetic mechanism of second stage for all samples can be described as[1-(1-α)(1/3)]2=kt. The activation energies of titania slag powders with different sizes (d1 < 0.075 mm, 0.125 < d2 < 0.150 mm, and 0.425 < d3 < 0.600 mm) at different reaction degrees are calculated. Under the current experimental conditions, the rate-controlling step at the first oxidation stage of all samples is a chemical reaction. The rate-controlling steps at the second oxidation stage are the chemical reaction and internal diffusion (d1<0.075 mm) and the internal diffusion (0.125 < d2 < 0.150 mm and 0.425 < d3 < 0.600 mm).
  • loading
  • [1]
    Y.J. Zhang, T. Qi, and Y. Zhang, A novel preparation of titanium dioxide from titanium slag, Hydrometallurgy, 96(2009), p. 52.
    [2]
    K.M. Lee and P.J. Park, Estimation of the environmental credit for the recycling of granulated blast furnace slag based on LCA, Resour. Conserv. Recycl., 44(2005), p. 139.
    [3]
    S.J. Pickering, N. Hay, T.F. Roylance, and G.H. Thomas, New process for dry granulation and heat recovery from molten blast-furnace slag, Ironmaking Steelmaking, 12(1985), p. 14.
    [4]
    T. Mizuochi, T. Akiyama, T. Shimada, E. Kasai, and J.I. Yagi, Feasibility of rotary cup atomizer for slag granulation, ISIJ Int., 41(2001), No. 12, p. 1423.
    [5]
    Y. Kashiwaya, I.N. Yutaro, and T. Akiyama, Development of a rotary cylinder atomizing method of slag for the production of amorphous slag particles, ISIJ Int., 50(2010), No. 9, p. 1245.
    [6]
    Y. Kashiwaya, I.N. Yutaro, and T. Akiyama, Mechanism of the formation of slag particles by the rotary cylinder atomization, ISIJ Int., 50(2010), No. 9, p. 1252.
    [7]
    G.Z. Deng and X. Chen, The oxidation of high titania slag, Iron Steel Vanadium Titanium, 2(1985), p. 41.
    [8]
    L.S. Li, G.Q. Li, T.P. Lou, Y.C. Che, and Z.T. Sui, Study on oxidation kinetics of Ti-enriched slag by electromotive force, Acta Metal. Sin., 36(2000), No. 6, p. 642.
    [9]
    L. Zhang, G.Q. Li, and Z.T. Sui, Oxidation kinetics of titaniferous slag, Chin. J. Nonferrous Met., 12(2002), No. 5, p. 1069.
    [10]
    A. Przepiera and M. Jabłoński, Thermal transformations of high titania slag of high titania content, J. Therm. Anal. Calorim, 74(2003), p. 631.
    [11]
    S. Samal, B.K. Mohapatra, P.S. Mukherjee, and S.K. Chatterjee, Integrated XRD, EPMA and XRF study of ilmenite and titania slag used in pigment production, J. Alloys Compd., 474(2009), p. 484.
    [12]
    S. Samal, B.K. Mohapatra, and P.S. Mukherjee, The effect of heat treatment on titania slag, J. Miner. Mater. Char. Eng., 9(2010), No. 9, p. 795.
    [13]
    A. Khawam and D.R. Flanagan, Solid-state kinetic models:basics and mathematical fundamentals, J. Phys. Chem. B, 110(2006), p. 17315.
    [14]
    H.H. Sheu, L.C. Hsiung, and J.R. Sheu, Synthesis of multiphase intermetallic compounds by mechanical alloying in Ni-Al-Ti system, J. Alloys Compd., 469(2009), p. 483.
    [15]
    Y.P. Shen, H.H. Hng and J.T. Oh, Formation kinetics of Ni-15% Fe-5% Mo during ball milling, Mater. Lett., 58(2004), p. 2824.
    [16]
    C.X. Li, X.W. Lv, J. Chen, X.Y. Liu, and C.G. Bai, Kinetics of titanium nitride synthesized with Ti and N2, Int. J. Refract. Met. Hard Mater, 52(2015), p. 165.
    [17]
    S.S. Tan, A.H. Su, W.H. Li, and E.L. Zhou, New insight into melting and crystallization behavior in semicrystalline poly(ethylene terephthalate), J. Polym. Sci., Part B:Polym. Phys., 38(2015), p. 53.
    [18]
    Q. Lin, N. Chen, Y. Wen, and R.M. Liu, Kinetics of hydrogen absorption in hydrogen storage alloy, Int. J. Miner. Metall. Mater., 4(1997), No. 2, p. 34.
    [19]
    J.D. Hancock and J.H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3, J. Am. Ceram. Soc., 55(1972), p.74.
    [20]
    N. Koga, Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature, Thermochim. Acta, 258(1995), p. 145.
    [21]
    J. Šesták, Diagnostic limits of phenomenological kinetic models introducing the accommodation function, J. Therm. Anal., 36(1990), p. 1997.
    [22]
    R. Ozao and M. Ochiai, Fractal Reaction in solids:reaction functions reconsidered, J. Ceram. Soc. Jpn., 101(1993), p. 263.
    [23]
    N. Koga, J. Malek, J. Sestak, and H. Tanaka, Data treatment in non-isothermal kinetics and diagnostic limits of phenomenological models, Netsu Sokutei, 20(1993), p. 210.
    [24]
    X.D. Gao, J.S. Wang, W. Lv, J.Y. Xiang, and X.W. Lv, The isothermal reduction kinetics of chromium-bearing vanadium-titanium magnetite sinter, Can. Metall. Q. 58(2019), p. 177.
    [25]
    R.C. Mccune and P. Wynblatt, Calcium segregation to a magnesium oxide (100) surface, J. Am. Ceram. Soc., 66(1983), p. 111.
    [26]
    J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xue, Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by H2-CO-CO2 gas mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 562.
    [27]
    C.Y. Ding, X.W. Lv, S.W. Xuan, K. Tang, and C.G. Bai, Isothermal reduction kinetics of powdered hematite and calcium ferrite with CO-N2 gas mixtures, ISIJ Int., 56(2016), No. 12, p. 2118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (1677) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return