Cite this article as:

Research Article

Oxidation pathway and kinetics of titania slag powders during cooling process in air

+ Author Affiliations
  • Available online: 20 February 2020
  • The oxidation pathway and kinetics of titania slag powders in air were analyzed through differential scanning calorimetry (DSC) and thermogravimetry (TG). The oxidation pathway of titania slag powders in air is divided into three stages according to three exothermic peaks and three corresponding mass gain stages displayed in the non-isothermal DSC and TG curves respectively. The isothermal oxidation kinetics of high titania slag powders with different sizes were analyzed through ln-ln analysis method. The entire isothermal oxidation process includes the following two stages. The kinetic mechanism of first stage is described as f(α)=1.77(1-α)[-ln(1-α)]((1.77-1)/1.77),f(α)=1.97(1-a)[-ln(1-a)]((1.97-1)/1.97), and f(α)=1.18(1-α)[-ln(1-α)]((1.18-1)/1.18); whereas the kinetic mechanism of second stage for all samples can be described as[1-(1-α)(1/3)]2=kt. The activation energies of titania slag powders with different sizes (d1 < 0.075 mm, 0.125 < d2 < 0.150 mm, and 0.425 < d3 < 0.600 mm) at different reaction degrees are calculated. Under the current experimental conditions, the rate-controlling step at the first oxidation stage of all samples is a chemical reaction. The rate-controlling steps at the second oxidation stage are the chemical reaction and internal diffusion (d1<0.075 mm) and the internal diffusion (0.125 < d2 < 0.150 mm and 0.425 < d3 < 0.600 mm).
  • 加载中
  • This work was supported by the National Key Research and Development Program of China (2018YFC1900500) and Graduate Research and Innovation Foundation of Chongqing (Grant number CYB17002).

     

  • [1] Y.J. Zhang, T. Qi, and Y. Zhang, A novel preparation of titanium dioxide from titanium slag, Hydrometallurgy, 96(2009), p. 52.
    [2] K.M. Lee and P.J. Park, Estimation of the environmental credit for the recycling of granulated blast furnace slag based on LCA, Resour. Conserv. Recycl., 44(2005), p. 139.
    [3] S.J. Pickering, N. Hay, T.F. Roylance, and G.H. Thomas, New process for dry granulation and heat recovery from molten blast-furnace slag, Ironmaking Steelmaking, 12(1985), p. 14.
    [4] T. Mizuochi, T. Akiyama, T. Shimada, E. Kasai, and J.I. Yagi, Feasibility of rotary cup atomizer for slag granulation, ISIJ Int., 41(2001), No. 12, p. 1423.
    [5] Y. Kashiwaya, I.N. Yutaro, and T. Akiyama, Development of a rotary cylinder atomizing method of slag for the production of amorphous slag particles, ISIJ Int., 50(2010), No. 9, p. 1245.
    [6] Y. Kashiwaya, I.N. Yutaro, and T. Akiyama, Mechanism of the formation of slag particles by the rotary cylinder atomization, ISIJ Int., 50(2010), No. 9, p. 1252.
    [7] G.Z. Deng and X. Chen, The oxidation of high titania slag, Iron Steel Vanadium Titanium, 2(1985), p. 41.
    [8] L.S. Li, G.Q. Li, T.P. Lou, Y.C. Che, and Z.T. Sui, Study on oxidation kinetics of Ti-enriched slag by electromotive force, Acta Metal. Sin., 36(2000), No. 6, p. 642.
    [9] L. Zhang, G.Q. Li, and Z.T. Sui, Oxidation kinetics of titaniferous slag, Chin. J. Nonferrous Met., 12(2002), No. 5, p. 1069.
    [10] A. Przepiera and M. Jabłoński, Thermal transformations of high titania slag of high titania content, J. Therm. Anal. Calorim, 74(2003), p. 631.
    [11] S. Samal, B.K. Mohapatra, P.S. Mukherjee, and S.K. Chatterjee, Integrated XRD, EPMA and XRF study of ilmenite and titania slag used in pigment production, J. Alloys Compd., 474(2009), p. 484.
    [12] S. Samal, B.K. Mohapatra, and P.S. Mukherjee, The effect of heat treatment on titania slag, J. Miner. Mater. Char. Eng., 9(2010), No. 9, p. 795.
    [13] A. Khawam and D.R. Flanagan, Solid-state kinetic models:basics and mathematical fundamentals, J. Phys. Chem. B, 110(2006), p. 17315.
    [14] H.H. Sheu, L.C. Hsiung, and J.R. Sheu, Synthesis of multiphase intermetallic compounds by mechanical alloying in Ni-Al-Ti system, J. Alloys Compd., 469(2009), p. 483.
    [15] Y.P. Shen, H.H. Hng and J.T. Oh, Formation kinetics of Ni-15% Fe-5% Mo during ball milling, Mater. Lett., 58(2004), p. 2824.
    [16] C.X. Li, X.W. Lv, J. Chen, X.Y. Liu, and C.G. Bai, Kinetics of titanium nitride synthesized with Ti and N2, Int. J. Refract. Met. Hard Mater, 52(2015), p. 165.
    [17] S.S. Tan, A.H. Su, W.H. Li, and E.L. Zhou, New insight into melting and crystallization behavior in semicrystalline poly(ethylene terephthalate), J. Polym. Sci., Part B:Polym. Phys., 38(2015), p. 53.
    [18] Q. Lin, N. Chen, Y. Wen, and R.M. Liu, Kinetics of hydrogen absorption in hydrogen storage alloy, Int. J. Miner. Metall. Mater., 4(1997), No. 2, p. 34.
    [19] J.D. Hancock and J.H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3, J. Am. Ceram. Soc., 55(1972), p.74.
    [20] N. Koga, Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature, Thermochim. Acta, 258(1995), p. 145.
    [21] J. Šesták, Diagnostic limits of phenomenological kinetic models introducing the accommodation function, J. Therm. Anal., 36(1990), p. 1997.
    [22] R. Ozao and M. Ochiai, Fractal Reaction in solids:reaction functions reconsidered, J. Ceram. Soc. Jpn., 101(1993), p. 263.
    [23] N. Koga, J. Malek, J. Sestak, and H. Tanaka, Data treatment in non-isothermal kinetics and diagnostic limits of phenomenological models, Netsu Sokutei, 20(1993), p. 210.
    [24] X.D. Gao, J.S. Wang, W. Lv, J.Y. Xiang, and X.W. Lv, The isothermal reduction kinetics of chromium-bearing vanadium-titanium magnetite sinter, Can. Metall. Q. 58(2019), p. 177.
    [25] R.C. Mccune and P. Wynblatt, Calcium segregation to a magnesium oxide (100) surface, J. Am. Ceram. Soc., 66(1983), p. 111.
    [26] J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xue, Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by H2-CO-CO2 gas mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 562.
    [27] C.Y. Ding, X.W. Lv, S.W. Xuan, K. Tang, and C.G. Bai, Isothermal reduction kinetics of powdered hematite and calcium ferrite with CO-N2 gas mixtures, ISIJ Int., 56(2016), No. 12, p. 2118.
  • [1] Farzin Ghadami,A. Sabour Rouh Aghdam, and Soheil Ghadami, Characterization of MCrAlY/nano-Al2O3 nanocomposite powder produced by high-energy mechanical-milling as feedstock for HVOF spraying deposition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2113-1
    [2] Arian Ghandi,Morteza Shamanian,Mohamad Reza Salmani, and Jalal Kangazian, A Pathway to Improve the Microstructural Features and Mechanical Properties of the DP590 Advanced High Strength Steel Welds, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2117-x
    [3] Jun-jun Yan,Xue-fei Huang, and Wei-gang Huang, High-temperature oxidation behavior of 9Cr‒5Si‒3Al ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1961-z
    [4] Jiu-han Xiao,Dong Wang,Li Wang,Xiang-wei Jiang,Kai-wen Li,Jia-sheng Dong, and Lang-hong Lou, 

    Oxidation behavior of a high Hf nickel-based superalloy in air at 900, 1000 and 1100°C

    Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2204-z
    [5] Alexander M. Klyushnikov,Rosa I. Gulyaeva,Evgeniy N. Selivanov, and Sergey M. Pikalov, Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2109-x
    [6] Lei Tian,Ao Gong,Xuan-gao Wu,Yan Liu,Zhi-feng Xu, and Ting-an Zhang, Cu2+-catalyzed mechanism in oxygen-pressure acid leaching of artificial sphalerite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1918-2
    [7] Qing-dong Qin, Jin-bo Qu, Yong-e Hu, Yu-jiao Wu, and  Xiang-dong Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi-TiO high-entropy alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1681-9
    [8] Zhi-yu Chang, Ping Wang, Jian-liang Zhang, Ke-xin Jiao, Yue-qiang Zhang, and  Zheng-jian Liu, Effect of CO2 and H2O on gasification dissolution and deep reaction of coke, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1694-4
    [9] Sheng-chao Duan, Chuang Li, Han-jie Guo, Jing Guo, Shao-wei Han, and  Wen-sheng Yang, Investigation of the kinetic mechanism of the demanganization reaction between carbon-saturated liquid iron and CaF2-CaO-SiO2-based slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1584-9
    [10] Tong-hua Liu, Wei Wang, Wen-jiang Qiang, and  Guo-gang Shu, Mechanical properties and kinetics of thermally aged Z3CN20.09M cast duplex stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1666-8
    [11] V. V. Ravikumar and  S. Kumaran, Improved strength and ductility of high alloy containing Al-12Zn-3Mg-2.5Cu alloy by combining non-isothermal step rolling and cold rolling, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1393-6
    [12] Han-quan Zhang and  Jin-tao Fu, Oxidation behavior of artificial magnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1442-1
    [13] Zhi-yuan Zhu, Yuan-fei Cai, You-jun Gong, Guo-ping Shen, Yu-guo Tu, and  Guo-fu Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000℃, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1461-y
    [14] Aref Sardari, Eskandar Keshavarz Alamdari, Mohammad Noaparast, and  Sied Ziaedin Shafaei, Kinetics of magnetite oxidation under non-isothermal conditions, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1429-y
    [15] Yong-sheng Sun, Yue-xin Han, Yan-feng Li, and  Yan-jun Li, Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1386-5
    [16] Mohamed Reda Boudchicha, Fausto Rubio, and  Slimane Achour, Synthesis of glass ceramics from kaolin and dolomite mixture, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1395-4
    [17] Sung Jin Kim, Kang Mook Ryu, and  Min-suk Oh, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1422-5
    [18] R. Mahendran, S. P. Kumaresh Babu, S. Natarajan, S. Manivannan, and  A. Vallimanalan, Phase transformation and crystal growth behavior of 8mol% (SmO1.5, GdO1.5, and YO1.5) stabilized ZrO2 powders, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1468-4
    [19] Hong-pan Liu, Xiao-feng Huang, Li-ping Ma, Dan-li Chen, Zhi-biao Shang, and  Ming Jiang, Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1410-9
    [20] P. C. Beuria, S. K. Biswal, B. K. Mishra, and  G. G. Roy, Kinetics of thermal decomposition of hydrated minerals associated with hematite ore in a fluidized bed reactor, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1400-y
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(808) PDF downloads(13) Cited by()

Proportional views

Oxidation pathway and kinetics of titania slag powders during cooling process in air

  • Corresponding author:

    Xue-wei Lv    E-mail: lvxuewei@cqu.edu.cn

  • 1) State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
  • 2) Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China
  • 3) College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
  • 4) College of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China
  • 5) WMG, University of Warwick, Coventry, CV4 7AL, UK

Abstract: The oxidation pathway and kinetics of titania slag powders in air were analyzed through differential scanning calorimetry (DSC) and thermogravimetry (TG). The oxidation pathway of titania slag powders in air is divided into three stages according to three exothermic peaks and three corresponding mass gain stages displayed in the non-isothermal DSC and TG curves respectively. The isothermal oxidation kinetics of high titania slag powders with different sizes were analyzed through ln-ln analysis method. The entire isothermal oxidation process includes the following two stages. The kinetic mechanism of first stage is described as f(α)=1.77(1-α)[-ln(1-α)]((1.77-1)/1.77),f(α)=1.97(1-a)[-ln(1-a)]((1.97-1)/1.97), and f(α)=1.18(1-α)[-ln(1-α)]((1.18-1)/1.18); whereas the kinetic mechanism of second stage for all samples can be described as[1-(1-α)(1/3)]2=kt. The activation energies of titania slag powders with different sizes (d1 < 0.075 mm, 0.125 < d2 < 0.150 mm, and 0.425 < d3 < 0.600 mm) at different reaction degrees are calculated. Under the current experimental conditions, the rate-controlling step at the first oxidation stage of all samples is a chemical reaction. The rate-controlling steps at the second oxidation stage are the chemical reaction and internal diffusion (d1<0.075 mm) and the internal diffusion (0.125 < d2 < 0.150 mm and 0.425 < d3 < 0.600 mm).

Acknowledgements  This work was supported by the National Key Research and Development Program of China (2018YFC1900500) and Graduate Research and Innovation Foundation of Chongqing (Grant number CYB17002).
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return