[1]
|
Y.J. Zhang, T. Qi, and Y. Zhang, A novel preparation of titanium dioxide from titanium slag, Hydrometallurgy, 96(2009), p. 52. |
[2]
|
K.M. Lee and P.J. Park, Estimation of the environmental credit for the recycling of granulated blast furnace slag based on LCA, Resour. Conserv. Recycl., 44(2005), p. 139. |
[3]
|
S.J. Pickering, N. Hay, T.F. Roylance, and G.H. Thomas, New process for dry granulation and heat recovery from molten blast-furnace slag, Ironmaking Steelmaking, 12(1985), p. 14. |
[4]
|
T. Mizuochi, T. Akiyama, T. Shimada, E. Kasai, and J.I. Yagi, Feasibility of rotary cup atomizer for slag granulation, ISIJ Int., 41(2001), No. 12, p. 1423. |
[5]
|
Y. Kashiwaya, I.N. Yutaro, and T. Akiyama, Development of a rotary cylinder atomizing method of slag for the production of amorphous slag particles, ISIJ Int., 50(2010), No. 9, p. 1245. |
[6]
|
Y. Kashiwaya, I.N. Yutaro, and T. Akiyama, Mechanism of the formation of slag particles by the rotary cylinder atomization, ISIJ Int., 50(2010), No. 9, p. 1252. |
[7]
|
G.Z. Deng and X. Chen, The oxidation of high titania slag, Iron Steel Vanadium Titanium, 2(1985), p. 41. |
[8]
|
L.S. Li, G.Q. Li, T.P. Lou, Y.C. Che, and Z.T. Sui, Study on oxidation kinetics of Ti-enriched slag by electromotive force, Acta Metal. Sin., 36(2000), No. 6, p. 642. |
[9]
|
L. Zhang, G.Q. Li, and Z.T. Sui, Oxidation kinetics of titaniferous slag, Chin. J. Nonferrous Met., 12(2002), No. 5, p. 1069. |
[10]
|
A. Przepiera and M. Jabłoński, Thermal transformations of high titania slag of high titania content, J. Therm. Anal. Calorim, 74(2003), p. 631. |
[11]
|
S. Samal, B.K. Mohapatra, P.S. Mukherjee, and S.K. Chatterjee, Integrated XRD, EPMA and XRF study of ilmenite and titania slag used in pigment production, J. Alloys Compd., 474(2009), p. 484. |
[12]
|
S. Samal, B.K. Mohapatra, and P.S. Mukherjee, The effect of heat treatment on titania slag, J. Miner. Mater. Char. Eng., 9(2010), No. 9, p. 795. |
[13]
|
A. Khawam and D.R. Flanagan, Solid-state kinetic models:basics and mathematical fundamentals, J. Phys. Chem. B, 110(2006), p. 17315. |
[14]
|
H.H. Sheu, L.C. Hsiung, and J.R. Sheu, Synthesis of multiphase intermetallic compounds by mechanical alloying in Ni-Al-Ti system, J. Alloys Compd., 469(2009), p. 483. |
[15]
|
Y.P. Shen, H.H. Hng and J.T. Oh, Formation kinetics of Ni-15% Fe-5% Mo during ball milling, Mater. Lett., 58(2004), p. 2824. |
[16]
|
C.X. Li, X.W. Lv, J. Chen, X.Y. Liu, and C.G. Bai, Kinetics of titanium nitride synthesized with Ti and N2, Int. J. Refract. Met. Hard Mater, 52(2015), p. 165. |
[17]
|
S.S. Tan, A.H. Su, W.H. Li, and E.L. Zhou, New insight into melting and crystallization behavior in semicrystalline poly(ethylene terephthalate), J. Polym. Sci., Part B:Polym. Phys., 38(2015), p. 53. |
[18]
|
Q. Lin, N. Chen, Y. Wen, and R.M. Liu, Kinetics of hydrogen absorption in hydrogen storage alloy, Int. J. Miner. Metall. Mater., 4(1997), No. 2, p. 34. |
[19]
|
J.D. Hancock and J.H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3, J. Am. Ceram. Soc., 55(1972), p.74. |
[20]
|
N. Koga, Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature, Thermochim. Acta, 258(1995), p. 145. |
[21]
|
J. Šesták, Diagnostic limits of phenomenological kinetic models introducing the accommodation function, J. Therm. Anal., 36(1990), p. 1997. |
[22]
|
R. Ozao and M. Ochiai, Fractal Reaction in solids:reaction functions reconsidered, J. Ceram. Soc. Jpn., 101(1993), p. 263. |
[23]
|
N. Koga, J. Malek, J. Sestak, and H. Tanaka, Data treatment in non-isothermal kinetics and diagnostic limits of phenomenological models, Netsu Sokutei, 20(1993), p. 210. |
[24]
|
X.D. Gao, J.S. Wang, W. Lv, J.Y. Xiang, and X.W. Lv, The isothermal reduction kinetics of chromium-bearing vanadium-titanium magnetite sinter, Can. Metall. Q. 58(2019), p. 177. |
[25]
|
R.C. Mccune and P. Wynblatt, Calcium segregation to a magnesium oxide (100) surface, J. Am. Ceram. Soc., 66(1983), p. 111. |
[26]
|
J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xue, Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by H2-CO-CO2 gas mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 562. |
[27]
|
C.Y. Ding, X.W. Lv, S.W. Xuan, K. Tang, and C.G. Bai, Isothermal reduction kinetics of powdered hematite and calcium ferrite with CO-N2 gas mixtures, ISIJ Int., 56(2016), No. 12, p. 2118. |