Cite this article as:

Research Article

Direct electrochemical N-doping to carbon paper in Molten LiCl-KCl-Li3N

+ Author Affiliations
  • Available online: 20 February 2020
  • Graphite materials are widely used as electrode materials for electrochemical energy s torage. N-doping is expected as a promising method to improve the electrochemical properties of graphite. A novel method for one-step N-doping to complete and compact carbon paper was proposed by molten salt electrolysis in LiCl-KCl-Li3N system. The results show that graphitization degree of carbon paper can be improved by molten salt electrolysis, particularly at 2.0 V. Nitrogen gas was produced on anode and nitrogen atoms will replace carbon atoms of carbon paper at different sites to realize nitrogen doping during electrolysis process. The doping content of N in carbon paper is up to 13.0wt%. Three kinds of nitrogen atoms, i.e. quaternary N(N-Q), pyrrolic N(N-5), and pyridinic N(N~6), existed in N-doping carbon paper. The N-doping carbon paper as cathode of Al-ion battery exhibits good charge-recharge properties.
  • 加载中
  • This research is supported by the Natural Science Foundation of China (51725401) and the Fundamental Research Funds for the Central Universities (FRT-TP-18-003C2).

     

  • [1] Y.R. Xue, Y.L. Li, J. Zhang, Z.F. Liu, and Y.L. Zhao, 2D graphdiyne materials:challenges and opportunities in energy field, Sci. China Chem., 61(2018), No.7, p. 765.
    [2] L.J. Chen, H. Chen, Z. Wang, X.Z. Gong, X.H. Chen, M.Y. Wang, and S.Q. Jiao, Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode, Chem. Eng. J., 363(2019), p. 270.
    [3] H.B. Wang, C.J. Zhang, Z.H. Liu, L. Wang, P.X. Han, H.X. Xu, K.J. Zhang, S.M. Dong, J.H. Yao, and G.L. Cui, Nitrogen-doped graphene nanosheets with excellent lithium storage properties, J. Mater. Chem., 21(2011), No. 14, p. 5430.
    [4] Y. Mao, H. Duan, B. Xu, L. Zhang, Y.S. Hu, C.C. Zhao, Z.X. Wang, L.Q. Chen, and Y.S. Yang, Lithium storage in nitrogen-rich mesoporous carbon materials, Energ. Environ. Sci., 5(2012), No. 7, p. 7950.
    [5] M.C. Lin, M. Gong, B.G. Lu, Y.P. Wu, D.Y. Wang, M.Y. Guan, M. Angell, C.X. Chen, J. Yang, B.J. Hwang, and H.J. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520(2015), No. 7547 p. 324.
    [6] S. Wang, S.Q. Jiao, W.L. Song, H.S. Chen, J.G. Tu, D.H. Tian, H.D. Jiao, C.P. Fu, and D.N. Fang, A novel dual-graphite aluminum-ion battery, Energy Storage Materials, 12(2018), p. 119.
    [7] H.B. Sun, W. Wang, Z.J. Yu, Y. Yuan, S. Wang, and S.Q. Jiao, A new aluminium-ion battery with high voltage, high safety and low cost, Chem. Commun., 51(2015), No. 59, p. 11892.
    [8] Y. Song, S.Q. Jiao, J.G. Tu, J.X. Wang, Y.J. Liu, H.D. Jiao, X.H. Mao, Z.C. Guo, and D.J. Fray, A long-life rechargeable Al ion battery based on molten salts, J. Mater. Chem. A, 5(2017), No. 3, p. 1282.
    [9] Y.Y. Shao, S. Zhang, M.H. Engelhard, G.S. Li, G.C. Shao, Y. Wang, J. Liu, I.A. Aksay, and Y.H. Lin, Nitrogen-doped graphene and its electrochemical applications, J. Mater. Chem., 20(2010), No. 35, p. 7491.
    [10] T.Q. Lin, I.W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, and F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage, Science, 350(2015), No. 6267, p. 1508.
    [11] Y.P. Wu, J.H. Zhu, and L. Huang, A review of three-dimensional graphene-based materials:Synthesis and applications to energy conversion/storage and environment, Carbon, 143(2019), p. 610.
    [12] Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, and Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries, Nature Commun., 9(2018), p. 1720.
    [13] H.P. Lei, J.G. Tu, D.H. Tian, and S.Q. Jiao, A nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors, New J. Chem., 42(2018), No. 19, p. 15648.
    [14] T. Schiros, D. Nordlund, L. Palova, D. Prezzi, L. Zhao, K.S. Kim, U. Wurstbauer, C. Gutierrez, D. Delongchamp, C. Jaye, D. Fischer, H. Ogasawara, L.G.M. Pettersson, D.R. Reichman, P. Kim, M.S. Hybertsen, and A.N. Pasupathy, Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene, Nano Lett., 12(2012), No. 8, p. 4025.
    [15] C.S. Huang, Y.J. Li, N. Wang, Y.R. Xue, Z.C. Zuo, H.B. Liu, and Y.L. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev., 118(2018), No. 16, p. 7744.
    [16] J.H. Hou, C.B. Cao, F. Idrees, and X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS Nano, 9(2015), No. 3, p. 2556.
    [17] G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, and E. Frackowiak, Effect of nitrogen in carbon electrode on the supercapacitor performance, Chem. Phys. Lett., 404(2005), No. 1, p. 53.
    [18] K.N. Wood, R. O'Hayre, and S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energ. Environ. Sci., 7(2014), No. 4, p. 1212.
    [19] L.S. Panchokarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene, Adv. Mater., 21(2009), No. 46, p. 4726.
    [20] X.W. Wang, G.Z. Sun, P. Routh, D.H. Kim, W. Huang, and P. Chen, Heteroatom-doped graphene materials:syntheses, properties and applications, Chem. Soc. Rev., 43(2014), No. 20, p. 7067.
    [21] Z.C. Han, J.B. Ge, J. Zhu, M.Y. Wang, and S.Q. Jiao, A convenient electrochemical method for preparing carbon nanotubes filled with amorphous boron, J. Electrochem. Soc., 165(2018), No. 16, p. E879.
    [22] Z.Q. Tan, K. Ni, G.X. Chen, W.C. Zeng, Z.C. Tao, M. Ikram, Q.B. Zhang, H.J. Wang, L.T. Sun, X.J. Zhu, X.J. Wu, H.X. Ji, R.S. Ruoff, and Y.W. Zhu, Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C-60 Molecules to Obtain Superior Energy Storage, Adv. Mater., 29(2017), No. 8, p. 1603414.
    [23] W. J. Lee, J. Lim, and S.O. Kim, Nitrogen Dopants in Carbon Nanomaterials:Defects or a New Opportunity?, Small Methods, 1(2017), No. 1-2, p. 1600014.
    [24] Z. Zhou, X.P. Gao, J. Yan, and D.Y. Song, Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations, Carbon, 44(2006), No. 5, p. 939.
    [25] R. Arenal, K. March, C.P. Ewels, X. Rocquefelte, M. Kociak, A. Loiseau, and O. Stephan, Atomic Configuration of Nitrogen-Doped Single-Walled Carbon Nanotubes, Nano Lett., 14(2014), No. 10, p. 5509.
    [26] Y.S. Zhao, J.W. Wan, H.Y. Yao, L.J. Zhang, K.F. Lin, L. Wang, N.L. Yang, D.B. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H.J. Zhao, Y.L. Li, and D. Wang, Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis, Nature Chem., 10(2018), No. 9, p. 924.
    [27] T. Kondo, S. Casolo, T. Suzuki, T. Shikano, M. Sakurai, Y. Harada, M. Saito, M. Oshima, M.I. Trioni, G.F. Tantardini, and J. Nakamura, Atomic-scale characterization of nitrogen-doped graphite:Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms, Phys. Rev. B, 86(2012), No. 3, p. 035436.
    [28] L. S. Panchakarla, A. Govindaraj, and C.N.R. Rao, Boron- and nitrogen-doped carbon nanotubes and graphene, Inorg. Chim. Acta, 363(2010), No. 15, p. 4163.
    [29] H.P. Lei, J.G. Tu, D.H. Tian, and S.Q. Jiao, Electrochemically Exfoliating Graphite Cathode to N-Doped Graphene Analogue and Its Excellent Al Storage Performance, J. Electrochem. Soc., 166(2019), No. 10, p. A1738.
    [30] Y. Ito, C. Christodoulou, M.V. Nardi, N. Koch, H. Sachdev, and K. Müllen, Chemical Vapor Deposition of N-Doped Graphene and Carbon Films:The Role of Precursors and Gas Phase, ACS Nano, 8(2014), No. 4, p. 3337.
    [31] M. Choucair, P. Thordarson, and J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication, Nature Nanotechnol., 4(2009), No. 1, p. 30.
    [32] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao, Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method, J. Phys. Chem. C, 113(2009), No. 11, p. 4257.
    [33] D.H. Deng, X.L. Pan, L. Yu, Y. Cui, Y.P. Jiang, J. Qi, W.X. Li, Q. Fu, X.C. Ma, Q.K. Xue, G.Q. Sun, and X.H. Bao, Toward N-doped graphene via solvothermal synthesis, Chem. Mater., 23(2011), No. 5, p. 1188.
    [34] S.Q. Jiao and H.M. Zhu, Novel metallurgical process for titanium production, J. Mater. Res., 21(2006), No. 9, p. 2172.
    [35] G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361.
    [36] L. Kartal, M.B. Daryal, G.K. Sireli, and S. Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1258.
    [37] L. Kartal and S. Timur, Direct electrochmical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 992.
    [38] T.H. Okabe, A. Horiuchi, K.T. Jacob, and Y. Waseda, Physiochemical studies of lithium nitride in molten LiCl-KCl, Mater. T. Jim, 41(2000), No. 7, p. 822.
    [39] H. Chen, H.Y. Xu, S.Y. Wang, T.Q. Huang, J.B. Xi, S.Y. Cai, F. Guo, Z. Xu, W.W. Gao, and C. Gao, Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life, Sci. Adv., 3(2017), No. 12, p. 8.
    [40] S. Wang, Z.J. Yu, J.G. Tu, J.X. Wang, D.H. Tian, Y.J. Liu, and S.Q. Jiao, A Novel Aluminum-Ion Battery:Al/AlCl3 -[EMIm]Cl/Ni3S2@Graphene, Adv. Energy Mater., 6(2016), p. 1600137.
    [41] A.S. Childress, P. Parajuli, J. Zhu, R. Podila, and A.M. Rao, A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries, Nano Energy, 39(2017), p. 69.
    [42] T.H. Okabe, A. Horiuchi, K.T. Jacob, and Y. Waseda, Electrochemical properties of Li3N dissolved in molten LiCl at 900 K, J. Electrochem. Soc., 148(2001), No.5, p. E219.
    [43] T. Goto, K. Toyoura, H. Tsujimura, and Y. Ito, Formation and control of zinc nitride in a molten LiCl-KCl-Li3N system, Mat. Sci. Eng. A, 380(2004), No. 1, p. 41.
    [44] H.B. Wang, T. Maiyalagan, and X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene:Synthesis, Characterization, and Its Potential Applications, ACS Catal., 2(2012), No. 5, p. 781.
    [45] C.N.R. Rao, A.K. Sood, R. Voggu, and K.S. Subrahmanyam, Some Novel Attributes of Graphene, J. Phys. Chem. Lett., 1(2010), No. 2, p. 572.
    [46] H.P. Lei, J.G. Tu, Z.J. Yu, and S.Q. Jiao, Exfoliation Mechanism of Graphite Cathode in Ionic Liquids, ACS Appl. Mater. Inter., 9(2017), No. 42, p. 36702.
    [47] S.K. Das. Graphene:A Cathode Material of Choice for Aluminum-Ion Batteries, Angew. Chem. Int. Edit., 57(2018), No. 51, p. 16606.
  • [1] Jing-long Liang,Dong-bin Wang,Le Wang,Hui Li,Wei-gang Cao, and Hong-yan Yan, A new electrochemical process on the recovery metallic Mn from waste LiMn2O4 based Li-ion batteries in NaCl-CaCl2 melts, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2144-7
    [2] Yan-bing Zong,Cheng-yu Zhao,Wen-hui Chen,Zhao-bo Liu, and Da-qiang Cang, Preparation of hydro-sodalite from fly ash using a hydrothermal method with a submolten salt system and study of the phase transition process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1904-8
    [3] Jun-xiang Wang,Ji-guo Tu,Han-dong Jiao, and Hong-min Zhu, Nanosheet-stacked flake graphite for high-performance Al storage in inorganic molten AlCl3-NaCl salt, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2080-6
    [4] Shahab Shahsavar,Mostafa Ketabchi, and Saeed Bagherzadeh, Fabrication of robust aluminum–carbon nanotube composites using ultrasonic assembly and rolling process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1969-4
    [5] George Z. Chen, Interactions of molten salts with cathode products in the FFC Cambridge Process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2202-1
    [6] Yan-peng Dou,Di-yong Tang,Hua-yi Yin, and Di-hua Wang, Electrochemical preparation of Invar Fe-Ni36 alloy from mixed oxides precursor in molten carbonates, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2169-y
    [7] Dong-yang Zhang,Xue Ma,Hong-wei Xie,Xiang Chen,Jia-kang Qu,Qiu-shi Song, and Hua-yi Yin, Electrochemical derusting in molten Na2CO3-K2CO3Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2068-2
    [8] Rong Zhu,Bao-chen Han,Kai Dong, and Guang-sheng Wei, A review of carbon dioxide disposal technology in the converter steelmaking process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2065-5
    [9] Meng-jun Hu,Ming-zhu Yin,Li-wen Hu,Peng-jie Liu,Shuo Wang, and Jian-bang Ge, The high value utilization of CO2 to synthesize sulfur doped carbon nano-fibers with excellent capacitive performance, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2120-2
    [10] Yu-hui Liu,Meng Tang,Shuang Zhang,Yu-ling Lin,Ying-cai Wang,You-qun Wang,Ying Dai,Xiao-hong Cao,Zhi-bin Zhang, and Yun-hai Liu, Insights into U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2154-5
    [11] Shu-qiang Jiao,Han-dong Jiao,Wei-li Song,Ming-yong Wang, and Ji-guo Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1971-x
    [12] Xiao-li Xi,Ming Feng,Li-wen Zhang, and Zuo-ren Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2175-0
    [13] Shi-yuan Liu,Yu-lan Zhen,Xiao-bo He,Li-jun Wang, and Kuo-chih Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2140-y
    [14] Eltefat Ahmadi,Ryosuke O. Suzuki,Tatsuya Kikuchi,Takumi Kaneko, and Yuta Yashima, Towards a sustainable technology for production of extra-pure Ti metal: electrolysis of sulfurized Ti(C,N) in molten CaCl2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2162-5
    [15] Zi-yi Liu, Yan-ping Bao, Min Wang, Xin Li, and  Fan-zheng Zeng, Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1736-6
    [16] Lei-zhang Gao, Tong-xiang Ma, Meng-jun Hu, Zhi-ming Yan, Xue-wei Lü, and  Mei-long Hu, Effect of titanium content on the precipitation behavior of carbon-saturated molten pig iron, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1755-3
    [17] Levent Kartal, Mehmet Barış Daryal, Güldem Kartal Şireli, and  Servet Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1867-9
    [18] Levent Kartal and  Servet Timur, Direct electrochemical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1821-x
    [19] Meng Ren, Cheng-yun Zhang, Yue-lin Wang, and  Jin-jun Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1703-7
    [20] Aliakbar Ghadi, Hassan Saghafian, Mansour Soltanieh, and  Zhi-gang Yang, Diffusion mechanism in molten salt baths during the production of carbide coatings via thermal reactive diffusion, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1538-7
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1020) PDF downloads(65) Cited by()

Proportional views

Direct electrochemical N-doping to carbon paper in Molten LiCl-KCl-Li3N

  • Corresponding authors:

    Ming-yong Wang    E-mail: mywang@ustb.edu.cn

    Shu-qiang Jiao    E-mail: sjiao@ustb.edu.cn

  • State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

Abstract: Graphite materials are widely used as electrode materials for electrochemical energy s torage. N-doping is expected as a promising method to improve the electrochemical properties of graphite. A novel method for one-step N-doping to complete and compact carbon paper was proposed by molten salt electrolysis in LiCl-KCl-Li3N system. The results show that graphitization degree of carbon paper can be improved by molten salt electrolysis, particularly at 2.0 V. Nitrogen gas was produced on anode and nitrogen atoms will replace carbon atoms of carbon paper at different sites to realize nitrogen doping during electrolysis process. The doping content of N in carbon paper is up to 13.0wt%. Three kinds of nitrogen atoms, i.e. quaternary N(N-Q), pyrrolic N(N-5), and pyridinic N(N~6), existed in N-doping carbon paper. The N-doping carbon paper as cathode of Al-ion battery exhibits good charge-recharge properties.

Acknowledgements  This research is supported by the Natural Science Foundation of China (51725401) and the Fundamental Research Funds for the Central Universities (FRT-TP-18-003C2).
Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return