Yang He, Jian Liu, Jian-hua Liu, Chun-lin Chen, and Chang-lin Zhuang, Carbothermal reduction characteristics of oxidized Mn ore through conventional heating and microwave heating, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 221-230. https://doi.org/10.1007/s12613-020-2037-9
Cite this article as:
Yang He, Jian Liu, Jian-hua Liu, Chun-lin Chen, and Chang-lin Zhuang, Carbothermal reduction characteristics of oxidized Mn ore through conventional heating and microwave heating, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 221-230. https://doi.org/10.1007/s12613-020-2037-9
Research Article

Carbothermal reduction characteristics of oxidized Mn ore through conventional heating and microwave heating

+ Author Affiliations
  • Corresponding author:

    Jian-hua Liu    E-mail: liujianhua@metall.ustb.edu.cn

  • Received: 19 November 2019Revised: 5 March 2020Accepted: 6 March 2020Available online: 9 March 2020
  • For the purpose of exploring a potential process to produce FeMn, the effects of microwave heating on the carbothermal reduction characteristics of oxidized Mn ore was investigated. The microwave heating curve of the mixture of oxidized Mn ore and coke was analyzed in association with the characterization of dielectric properties. The comparative experiments were conducted on the carbothermal reductions through conventional and microwave heatings at temperatures ranging from 973 to 1373 K. The thermogravimetric analysis showed that carbothermal reactions under microwave heating proceeded to a greater extent and at a faster pace compared with those under conventional heating. The metal phases were observed in the microstructures only under microwave heating. The carbothermal reduction process under microwave heating was discussed. The electric and magnetic susceptibility differences were introduced into the thermodynamics analysis for the formation of metal Mn. The developed thermodynamics considered that microwave heating could make the reduction of MnO to Mn more accessible and increase the reduction extent.

  • loading
  • [1]
    X.Y. Zhang, X.D. Tian, S.G. Liu, and P.P. Zhang, Utilization technique of ferromanganese ore, Chin. J. Nonferrous Met., 15(2005), No. 4, p. 650.
    [2]
    A. Ahmed, H. Halfa, M.K. El-Fawakhry, H. El-Faramawy, and M. Eissa, Parameters affecting energy consumption for producing high carbon ferromanganese in a closed submerged arc furnace, J. Iron Steel Res. Int., 21(2014), No. 7, p. 666. doi: 10.1016/S1006-706X(14)60103-5
    [3]
    R.H. Eric and E. Burucu, The mechanism and kenetics of the carbothermic reduction of mamatwan manganese ore fines, Miner. Eng., 5(1992), No. 7, p. 795. doi: 10.1016/0892-6875(92)90247-7
    [4]
    W.J. Rankin and J.R. Wynnyckyj, Kinetics of reduction of MnO in powder mixtures with carbon, Metall. Mater. Trans. B, 28(1997), No. 2, p. 307. doi: 10.1007/s11663-997-0097-0
    [5]
    M. Yastreboff, O. Ostrovski, and S. Ganguly, Effect of gas composition on the carbothermic reduction of manganese oxide, ISIJ Int., 43(2003), No. 2, p. 161. doi: 10.2355/isijinternational.43.161
    [6]
    X. Gu, J. Yue, L.J. Li, H.T. Xue, J. Yang, and X.B. Zhao, General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes, Electrochim. Acta, 184(2015), p. 250. doi: 10.1016/j.electacta.2015.10.037
    [7]
    K.Q. Li, G. Chen, J. Chen, J.H. Peng, R. Ruan, and C. Srinivasakannan, Microwave pyrolysis of walnut shell for reduction process of low-grade pyrolusite, Bioresour. Technol, 291(2019), art. No. 121838. doi: 10.1016/j.biortech.2019.121838
    [8]
    K.Q. Li, G. Chen, X.T. Li, J.H. Peng, R. Ruan, M. Omran, and J. Chen, High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field, Bioresour. Technol, 294(2019), art. No. 122217. doi: 10.1016/j.biortech.2019.122217
    [9]
    R. Kononov, O. Ostrovski, and S. Ganguly, Carbothermal reduction of manganese oxide in different gas atmospheres, Metall. Mater. Trans. B, 39(2008), No. 5, p. 662. doi: 10.1007/s11663-008-9191-1
    [10]
    K.S. Abdel Halim, M. Bahgat, M.B. Morsi, and K. El-Barawy, Pre-reduction of manganese ores for ferromanganese industry, Ironmaking Steelmaking, 38(2011), No. 4, p. 279. doi: 10.1179/030192310X12827375731465
    [11]
    R. Elliott, K. Coley, S. Mostaghel, and M. Barati, Review of manganese processing for production of TRIP/TWIP steels, Part 1: Current practice and processing fundamentals, JOM, 70(2018), No. 5, p. 680. doi: 10.1007/s11837-018-2769-4
    [12]
    M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd., 494(2010), No. 1-2, p. 175. doi: 10.1016/j.jallcom.2010.01.068
    [13]
    S.W. Kingman and N.A. Rowson, Microwave treatment of minerals—A review, Miner. Eng., 11(1998), No. 11, p. 1081. doi: 10.1016/S0892-6875(98)00094-6
    [14]
    Z.Y. Ma, Y. Liu, J.K. Zhou, M.D. Liu, and Z.Z. Liu, Recovery of vanadium and molybdenum from spent petrochemical catalyst by microwave-assisted leaching, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 33. doi: 10.1007/s12613-019-1707-y
    [15]
    D.M.P. Mingos and D.R. Baghurst, Tilden Lecture: Applications of microwave dielectric heating effects to synthetic problems in chemistry, Chem. Soc. Rev., 20(1991), No. 1, p. 1. doi: 10.1039/cs9912000001
    [16]
    Z.Q. Zhu and J. Zhou, Rapid growth of ZnO hexagonal tubes by direct microwave heating, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 80. doi: 10.1007/s12613-010-0114-1
    [17]
    J.P. Wang, T. Jiang, Y.J. Liu, and X.X. Xue, Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 160. doi: 10.1007/s12613-019-1720-1
    [18]
    K.Q. Li, J. Chen, G. Chen, J.H. Peng, R. Ruan, and C. Srinivasakannan, Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore, Bioresour. Technol, 286(2019), art. No. 121381. doi: 10.1016/j.biortech.2019.121381
    [19]
    K. Onol and M.N. Saridede, Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 228. doi: 10.1007/s12613-013-0717-4
    [20]
    A.S. Awad, D. Merheb, M. Zakhour, M. Nakhl, and J.L. Bobet, Rapid and direct reactive synthesis of Ti–Al intermetallics by microwave heating of TiH2 and Al powder without microwave susceptor, J. Alloys Compd., 720(2017), p. 182. doi: 10.1016/j.jallcom.2017.05.176
    [21]
    Z.W. Peng and J.Y. Hwang, Microwave-assisted metallurgy, Int. Mater. Rev., 60(2015), No. 1, p. 30. doi: 10.1179/1743280414Y.0000000042
    [22]
    C.A. Pickles, Microwaves in extractive metallurgy: Part 2—A review of applications, Miner. Eng., 22(2009), No. 13, p. 1112. doi: 10.1016/j.mineng.2009.02.014
    [23]
    N. Standish and H. Worner, Microwave application in the reduction of metal oxides with carbon, J. Microwave Power Electromagn. Energy, 25(1990), No. 3, p. 177. doi: 10.1080/08327823.1990.11688126
    [24]
    N. Standish and W. Huang, Microwave application in carbothermic reduction of iron ores, ISIJ Int., 31(1991), No. 3, p. 241. doi: 10.2355/isijinternational.31.241
    [25]
    K.Q. Li, J. Chen, J.H. Peng, R. Ruan, C. Srinivasakannan, and G. Chen, Pilot-scale study on enhanced carbothermal reduction of low-grade pyrolusite using microwave heating, Powder Technol., 360(2020), p. 846. doi: 10.1016/j.powtec.2019.11.015
    [26]
    X.J. Su, Q.H. Mo, C.L. He, S.J. Ma, and S.J. Que, Microwave absorption characteristics of manganese compounds, Min. Metall. Eng., 35(2015), No. 5, p. 90.
    [27]
    J. Chen, L. Li, G. Chen, J.H. Peng, and C. Srinivasakannan, Rapid thermal decomposition of manganese ore using microwave heating, J. Alloys Compd., 699(2017), p. 430. doi: 10.1016/j.jallcom.2016.12.379
    [28]
    J. Liu, J.H. Liu, G.H. Yuan, L.Z. Peng, K.W. Liu, and Y.Y. Zhang, Microwave heating characteristics of raw materials for ferromanganese production, Min. Metall. Eng., 35(2015), No. 3, p. 91.
    [29]
    J. Jacob, L.H.L. Chia, and F.Y.C. Boey, Thermal and non-thermal interaction of microwave radiation with materials, J. Mater. Sci., 30(1995), No. 21, p. 5321. doi: 10.1007/BF00351541
    [30]
    A. de la Hoz, A. Diaz-Ortiz, and A. Moreno, Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Chem. Soc. Rev., 34(2005), No. 21, p. 164.
    [31]
    L. Perreux and A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations, Tetrahedron, 57(2001), No. 45, p. 9199. doi: 10.1016/S0040-4020(01)00905-X
    [32]
    J. Fukushima, K. Kashimura, S. Takayama, M. Sato, S. Sano, Y. Hayashi, and H. Takizawa, In-situ kinetic study on non-thermal reduction reaction of CuO during microwave heating, Mater. Let., 91(2013), p. 252. doi: 10.1016/j.matlet.2012.09.114
    [33]
    Y.L. Jiang, B.G. Liu, P. Liu, J.H. Peng, and L.B. Zhang, Dielectric properties and oxidation roasting of molybdenite concentrate by using microwave energy at 2.45 GHz frequency, Metall. Mater. Trans. B, 48(2017), No. 6, p. 3047. doi: 10.1007/s11663-017-1083-9
    [34]
    Y. Zimmels, Thermodynamics in the presence of electromagnetic fields, Phys. Rev. E, 52(1995), No. 2, p. 1452. doi: 10.1103/PhysRevE.52.1452
    [35]
    J.R. Rumble, CRC Handbook of Chemistry and Physics, 100th ed., CRC Press, Boca Raton, Florida, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Share Article

    Article Metrics

    Article Views(2231) PDF Downloads(45) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return