Cite this article as:

Research Article

Interface microstructure and formation mechanism of ultrasonic spot welding for Al-Ti dissimilar metals

+ Author Affiliations
  • Received: 3 January 2020Revised: 17 March 2020Accepted: 18 March 2020Available online: 20 March 2020
  • The AA6061 Al and commercial pure Ti were welded by ultrasonic spot welding (USW). The focus of this investigation is the interface microstructure and joint formation. The Al-Ti USW joints were welded at the welding energy of 1100 J~ 3200 J. The joint appearance and interface microstructure were observed mainly by Optical microscope (OM) and field emission scanning electron microscope (SEM) The results indicated that good joint only can be achieved with proper welding energy of 2150 J. No significant intermetallic compound (IMC) was found under all conditions. The high energy barriers of Al-Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis. The heat input is crucial for the material plastic flow and bonding area which plays an important role in the joint formation.
  • 加载中
  •  

  • [1] Xing-hai Yang,Xiao-hua Chen,Shi-wei Pan,Zi-dong Wang,Kai-xuan Chen,Da-yong Li, and Jun-wei Qin, Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu−Nb addition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2159-0
    [2] Behrouz Bagheri,Mahmoud Abbasi, and Amin Abdollahzadeh, Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2085-1
    [3] Gao-hui Li,Li Zhou,Ling-yun Luo,Xi-ming Wu, and Ning Guo, Material flow behavior and microstructural evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1998-z
    [4] Lei Zhang, Hui-xin Li, Feng-xian Shi, Jian-wei Yang, Li-hua Hu, and  Min-xu Lu, Environmental boundary and formation mechanism of different types of H2S corrosion products on pipeline steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1420-7
    [5] Bo-lin He, Lei Xiong, Ming-ming Jiang, Ying-xia Yu, and  Li Li, Surface grain refinement mechanism of SMA490BW steel cross joints by ultrasonic impact treatment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1421-6
    [6] Mohammadreza Khanzadeh Gharah Shiran, Gholamreza Khalaj, Hesam Pouraliakbar, Mohamma dreza Jandaghi, Hamid Bakhtiari, and  Masoud Shirazi, Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321-aluminum 1230 explosive-welding interface, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1519-x
    [7] Hong-xiang Li, Xin-yu Nie, Zan-bing He, Kang-ning Zhao, Qiang Du, Ji-shan Zhang, and  Lin-zhong Zhuang, Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1534-y
    [8] Chun-duo Dai, Rui-na Ma, Wei Wang, Xiao-ming Cao, and  Yan Yu, Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1437-y
    [9] Hai-xia Qin, Yong Li, Li-xiong Bai, Meng-long Long, Wen-dong Xue, and  Jun-hong Chen, Reaction mechanism for in-situ β-SiAlON formation in Fe3Si-Si3N4-Al2O3 composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1411-8
    [10] Dong Wu, Jun Shen, Meng-bing Zhou, Liang Cheng, and  Jia-xing Sang, Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1507-1
    [11] Li Zhang, Bao-lin Wu, and  Yu-lin Liu, Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core-shell-structured Ti/Al3Ti, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1536-9
    [12] Xin-bo Liu, Feng-bin Qiao, Li-jie Guo, and  Xiong-er Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1391-8
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1298) PDF downloads(8) Cited by()

Proportional views

Interface microstructure and formation mechanism of ultrasonic spot welding for Al-Ti dissimilar metals

  • Corresponding author:

    Hong-Bo Xu    E-mail: xuhongbo@hit.edu.cn

  • 1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
  • 2. Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China

Abstract: The AA6061 Al and commercial pure Ti were welded by ultrasonic spot welding (USW). The focus of this investigation is the interface microstructure and joint formation. The Al-Ti USW joints were welded at the welding energy of 1100 J~ 3200 J. The joint appearance and interface microstructure were observed mainly by Optical microscope (OM) and field emission scanning electron microscope (SEM) The results indicated that good joint only can be achieved with proper welding energy of 2150 J. No significant intermetallic compound (IMC) was found under all conditions. The high energy barriers of Al-Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis. The heat input is crucial for the material plastic flow and bonding area which plays an important role in the joint formation.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return