Cite this article as:

Research Article

Effect of tool plunge depth on the microstructure and fracture behavior of AZ91 magnesium alloy refill friction stir spot welded joints

+ Author Affiliations
  • Received: 7 January 2020Revised: 9 March 2020Accepted: 18 March 2020Available online: 20 March 2020
  • Refill friction stir spot welding (RFSSW) was applied to join the 2-mm-thick AZ91D-H24 magnesium alloy sheets successfully, and the effect of tool plunge depth on the microstructure and fracture behavior of the joints were investigated in detail. The sound surface formation of the joints can be obtained as the plunge depths were 2.0 mm and 2.5 mm. The plunge depth significantly affected the height of hook, and the higher plunge depth corresponded to the more severe upward bend of hook whose morphology compromised the tensile-shear properties of the joints. The hardness reached a minimum at the TMAZ due to the precipitation phases of this zone dissolved into the α-matrix during the welding process. The fracture modes of RFSSW joints can be divided into three types: shear fracture, plug fracture and shear-plug fracture. Among them, the joint under shear-plug fracture had the best tensile-shear load of 6400 N.
  • 加载中
  •  

  • [1] V.T. Gaikwad,M.K. Mishra,V.D. Hiwarkar, and R.K.P. Singh, Microstructure and mechanical properties of friction welded carbon steel (EN24) and nickel-based superalloy (IN718), Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2008-1
    [2] Behrouz Bagheri,Mahmoud Abbasi, and Amin Abdollahzadeh, Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2085-1
    [3] Dong Wu,Wen-ya Li,Qiang Chu,Yang-fan Zou,Xi-chang Liu, and Yan-jun Gao, Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al-Mg, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2254-x
    [4] Gao-hui Li,Li Zhou,Ling-yun Luo,Xi-ming Wu, and Ning Guo, Material flow behavior and microstructural evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1998-z
    [5] Hamed Jamshidi Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1682-8
    [6] Ali Shamsipur, Amir Anvari, and  Ahmad Keyvani, Improvement of microstructure and corrosion properties of friction stir welded AA5754 by adding Zn interlayer, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1646-z
    [7] Tevfik Küçükömeroğlu, Semih M. Aktarer, Güven İpekoğlu, and  Gürel Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1700-x
    [8] K. Sanesh, S. Shiam Sunder, and  N. Radhika, Effect of reinforcement content on the adhesive wear behavior of Cu10Sn5Ni/Si3N4 composites produced by stir casting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1495-1
    [9] Z. M. Sheggaf, R. Ahmad, M. B. A. Asmael, and  A. M. M. Elaswad, Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1523-1
    [10] M. Siva Prasad, M. Ashfaq, N. Kishore Babu, A. Sreekanth, K. Sivaprasad, and  V. Muthupandi, Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1438-x
    [11] Ji-hong Dong, Chong Gao, Yao Lu, Jian Han, Xiang-dong Jiao, and  Zhi-xiong Zhu, Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024-T3 aluminum alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1392-7
    [12] Xin-bo Liu, Feng-bin Qiao, Li-jie Guo, and  Xiong-er Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1391-8
    [13] Dong Wu, Jun Shen, Meng-bing Zhou, Liang Cheng, and  Jia-xing Sang, Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1507-1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1301) PDF downloads(15) Cited by()

Proportional views

Effect of tool plunge depth on the microstructure and fracture behavior of AZ91 magnesium alloy refill friction stir spot welded joints

  • 1. Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
  • 2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

Abstract: Refill friction stir spot welding (RFSSW) was applied to join the 2-mm-thick AZ91D-H24 magnesium alloy sheets successfully, and the effect of tool plunge depth on the microstructure and fracture behavior of the joints were investigated in detail. The sound surface formation of the joints can be obtained as the plunge depths were 2.0 mm and 2.5 mm. The plunge depth significantly affected the height of hook, and the higher plunge depth corresponded to the more severe upward bend of hook whose morphology compromised the tensile-shear properties of the joints. The hardness reached a minimum at the TMAZ due to the precipitation phases of this zone dissolved into the α-matrix during the welding process. The fracture modes of RFSSW joints can be divided into three types: shear fracture, plug fracture and shear-plug fracture. Among them, the joint under shear-plug fracture had the best tensile-shear load of 6400 N.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return