Cite this article as:

Research Article

Effect of Mo Content on the Thermal Stability of Ti-Mo bearing Ferritic Steel

+ Author Affiliations
  • Received: 25 November 2019Revised: 23 March 2020Accepted: 24 March 2020Available online: 26 March 2020
  • The effects of tempering holding time at 700 ℃ on the morphology, mechanical properties, and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy. Equilibrium solid solution amount of Mo, Ti, and C in ferrite at various temperature were calculated. The variation in the sizes of nanoparticles with time at different Mo contents was analyzed. The experiments and calculations were in good agreement with one other, which showed that the change in the nanoparticle size of MNF steel was the smallest during the aging process. Higher Mo contents inhibited the maturation and growth of nanoparticles, but when the Mo content exceeded 0.37 wt%, no obvious inhibition effect was observed. The tensile strength and yield strength decreased continuously with the tempering time. The analysis of the strengthening and toughening mechanism showed that the different mechanical properties between the three was mainly determined by the grain refinement strengthening (the difference range was 30-40 MPa) and precipitation strengthening (the difference range was 78-127 MPa). MNF steel with an ideal chemical ratio had the highest thermodynamic stability, and LNF and HNF have relatively similar thermodynamic stabilities.
  • 加载中
  •  

  • [1] Chao Pan,Xiao-jun Hu,Jian-chao Zheng,Ping Lin, and Kuo-chih Chou, Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1981-8
    [2] Yunlong Wang,Yinli Chen, and Wei Yu, Effect of Cr/Mn segregation on pearlite-martensite banded structure of high carbon bearing steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2035-y
    [3] Tian-dang Huang,Shi-yu Wu,Hui Jiang,Yi-ping Lu,Tong-min Wang, and Ting-ju Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2040-1
    [4] Xi-cong Ye,Tong Wang,Zhang-yang Xu,Chang Liu,Hai-hua Wu,Guang-wei Zhao, and Dong Fang, Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2024-1
    [5] Di Wu,Wan-lin Wang,Li-gang Zhang,Zhen-yu Wang,Ke-chao Zhou, and Li-bin Liu, Erratum to: New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1940-4
    [6] Shi-jian Li, Guo-guang Cheng, Zhi-qi Miao, Lie Chen, and  Xin-yan Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1737-5
    [7] Harshpreet Singh, Muhammad Hayat, Hongzhou Zhang, Raj Das, and  Peng Cao, Effect of TiB2 content on microstructure and properties of in situ Ti-TiB composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1797-6
    [8] Di Wu, Wan-lin Wang, Li-gang Zhang, Zhen-yu Wang, Ke-chao Zhou, and  Li-bin Liu, New high-strength Ti-Al-V-Mo alloy: from high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1854-1
    [9] Chao Gu, Yan-ping Bao, Peng Gan, Min Wang, and  Jin-shan He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1609-4
    [10] Yuan Gao, Zong-de Liu, Qi Wang, and  Yong-tian Wang, Microstructure and mechanical properties of Nb–Mo–ZrB2 composites prepared by hot-pressing sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1631-6
    [11] Guo-hua Zhang, He-qiang Chang, Lu Wang, and  Kuo-chih Chou, Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1585-8
    [12] Chen-yang Qiu, Lang Li, Lei-lei Hao, Jian-gong Wang, Xun Zhou, and  Yong-lin Kang, Effect of continuous annealing temperature on microstructure and properties of ferritic rolled interstitial-free steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1600-0
    [13] Dan Wu, Fu-ming Wang, Jin Cheng, and  Chang-rong Li, Effect of Nb and V on the continuous cooling transformation of undercooled austenite in Cr–Mo–V steel for brake discs, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1638-z
    [14] Sandeep Chauhan, Vikas Verma, Ujjwal Prakash, P. C. Tewari, and  Dinesh Khanduja, Studies on induction hardening of powder-metallurgy-processed Fe-Cr/Mo alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1478-2
    [15] Gülşah Aktaş Çelik, Şeyda Polat, and  Ş. Hakan Atapek, Tribological behavior of CrN-coated Cr-Mo-V steels used as die materials, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1532-0
    [16] Shao-chun Chen, Hong-xiang Ye, and  Xin-qiang Lin, Effect of rare earth and alloying elements on the thermal conductivity of austenitic medium manganese steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1449-7
    [17] Hong-rui Yue, Tao Jiang, Qiao-yi Zhang, Pei-ning Duan, and  Xiang-xin Xue, Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500℃, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1460-z
    [18] Jian-long Guo, Yan-ping Bao, and  Min Wang, Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1529-8
    [19] Kai-rui Zhu, Wei Jiang, Ji-li Wu, and  Bo Zhang, Effect of Mo on properties of the industrial Fe-B-alloy-derived Fe-based bulk metallic glasses, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1479-1
    [20] Yuan-ji Shi, Xiao-chun Wu, Jun-wan Li, and  Na Min, Tempering stability of Fe-Cr-Mo-W-V hot forging die steels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1505-3
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(712) PDF downloads(6) Cited by()

Proportional views

Effect of Mo Content on the Thermal Stability of Ti-Mo bearing Ferritic Steel

  • Corresponding author:

    Yao Huang    E-mail: taohua-daozhu@163.com

  • 1. China Electric Power Research Institute, Beijing 100192, China
  • 2. University of Science and Technology Beijing,100083, Beijing
  • 3. State Grid Corporation, Beijing 100031, China
  • 4. JiangXi University of Science and Technology, GanZhou 341000, China
  • 5. Metal and Chemistry Research Institute,China Academy of Railway Sciences Corporation Limited, Beijing 100081

Abstract: The effects of tempering holding time at 700 ℃ on the morphology, mechanical properties, and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy. Equilibrium solid solution amount of Mo, Ti, and C in ferrite at various temperature were calculated. The variation in the sizes of nanoparticles with time at different Mo contents was analyzed. The experiments and calculations were in good agreement with one other, which showed that the change in the nanoparticle size of MNF steel was the smallest during the aging process. Higher Mo contents inhibited the maturation and growth of nanoparticles, but when the Mo content exceeded 0.37 wt%, no obvious inhibition effect was observed. The tensile strength and yield strength decreased continuously with the tempering time. The analysis of the strengthening and toughening mechanism showed that the different mechanical properties between the three was mainly determined by the grain refinement strengthening (the difference range was 30-40 MPa) and precipitation strengthening (the difference range was 78-127 MPa). MNF steel with an ideal chemical ratio had the highest thermodynamic stability, and LNF and HNF have relatively similar thermodynamic stabilities.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return