Cite this article as:

Research Article

Effect of organic binders in the activation and properties of indurated magnetite pellets

+ Author Affiliations
  • Received: 16 January 2020Revised: 30 March 2020Accepted: 1 April 2020Available online: 3 April 2020
  • In the ironmaking process, adding organic binder replaces a portion of bentonite is a potential solution to improve the performance of the pellets. The interaction between the original bentonite (OB) and the organic binder was investigated. The results illustrate that the micro-morphology of the organic composite bentonite (OCB) became porous and the infrared difference spectrum was a curve. Additionally, the residual burning rates of OB and organic binder were measured, which were 82.72% and 2.30%, respectively. Finally, the influence of OCB on the properties of pellets were studied. The compressive strength of OCB-added green pellets (14.7 N/pellet) was better than that of OB-added pellets (10.3 N/pellet), and the range of melting temperature (173℃) was narrower than that of OB-added pellets (198℃). The compressive strength of OCB-added pellets increased from 2156 N/pellet to 3156 N/pellet with the roasting temperature increased from 1200℃ to 1250℃.
  • 加载中
  •  

  • [1] Zhong-qing Liu,Jian Zheng,Yi Wang, and Xu Liu, Selective reduction of carbon dioxide into amorphous carbon over activated natural magnetite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2034-z
    [2] Xiao-feng Wang, Ming-xing Guo, Cun-qiang Ma, Jian-bin Chen, Ji-shan Zhang, and  Lin-zhong Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1645-0
    [3] Xiao-hui Ao, Shu-ming Xing, Bai-shui Yu, and  Qing-you Han, Effect of Ce addition on microstructures and mechanical properties of A380 aluminum alloy prepared by squeeze-casting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1602-y
    [4] Hai-tao Wang, Zi-xiang Wang, Lian-zheng Wang, Jing-qin Wang, and  Yan-cai Zhu, Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO2 contact materials, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1680-x
    [5] Nathália Vieceli, Carlos A. Nogueira, Manuel F. C. Pereira, Fernando O. Durão, Carlos Guimarães, and  Fernanda Margarido, Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1541-7
    [6] Kai Jia, Qi-ming Feng, Guo-fan Zhang, Qing Shi, Yuan-jia Luo, and  Chang-bin Li, Improved hemimorphite flotation using xanthate as a collector with S(Ⅱ) and Pb(Ⅱ) activation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1634-3
    [7] Wei Li, Nan Wang, Gui-qin Fu, Man-sheng Chu, and  Miao-yong Zhu, Effect of Cr2O3 addition on the oxidation induration mechanism of Hongge vanadium titanomagnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1583-x
    [8] Zuo-li Li, Jun Zhao, Jia-lin Sun, Feng Gong, and  Xiu-ying Ni, Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1533-z
    [9] Yan-ping Xia, Pei-hong Wang, Shi-wei Shi, Gang He, Miao Zhang, Jian-guo Lü, and  Zhao-qi Sun, Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1450-1
    [10] Jin-tao Shi, Long-gang Hou, Jin-rong Zuo, Lin-zhong Zhuang, and  Ji-shan Zhang, Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1446-x
    [11] Aref Sardari, Eskandar Keshavarz Alamdari, Mohammad Noaparast, and  Sied Ziaedin Shafaei, Kinetics of magnetite oxidation under non-isothermal conditions, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1429-y
    [12] Gong-jin Cheng, Zi-xian Gao, He Yang, and  Xiang-xin Xue, Effect of diboron trioxide on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1515-1
    [13] Han-quan Zhang and  Jin-tao Fu, Oxidation behavior of artificial magnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1442-1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1313) PDF downloads(18) Cited by()

Proportional views

Effect of organic binders in the activation and properties of indurated magnetite pellets

  • Corresponding author:

    Zheng-jian Liu    E-mail: liuzhengjian@ustb.edu.cn

  • 1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing,0th Xueyuan Road, Haidian District, Beijing 100083, China
  • 2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30th Xueyuan Road, Haidian District, Beijing 100083, China
  • 3. Department of Ferrous Metallurgy, RWTH Aachen University, Intzestraße 1, 52072 Aachen, Germany

Abstract: In the ironmaking process, adding organic binder replaces a portion of bentonite is a potential solution to improve the performance of the pellets. The interaction between the original bentonite (OB) and the organic binder was investigated. The results illustrate that the micro-morphology of the organic composite bentonite (OCB) became porous and the infrared difference spectrum was a curve. Additionally, the residual burning rates of OB and organic binder were measured, which were 82.72% and 2.30%, respectively. Finally, the influence of OCB on the properties of pellets were studied. The compressive strength of OCB-added green pellets (14.7 N/pellet) was better than that of OB-added pellets (10.3 N/pellet), and the range of melting temperature (173℃) was narrower than that of OB-added pellets (198℃). The compressive strength of OCB-added pellets increased from 2156 N/pellet to 3156 N/pellet with the roasting temperature increased from 1200℃ to 1250℃.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return