Cite this article as: |
Jie Luo, Xin Li, Fu-jie Zhang, Song Chen, and Ding Ren, Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2056-6 |
Ding Ren E-mail: rending2k@scu.edu.cn
[1] |
T. Hijikata, M. Sakata, H. Miyashiro, K. Kinoshita, T. Higashi, and T. Tamai, Development of pyrometallurgical partitioning of actinides from high-level radioactive waste using a reductive extraction step, Nucl. Technol., 115(1996), No. 1, p. 114. doi: 10.13182/NT96-A35280
|
[2] |
G.R. Choppin, Actinide speciation in the environment, J. Radioanal. Nucl. Chem., 273(2007), No. 3, p. 695. doi: 10.1007/s10967-007-0933-3
|
[3] |
M.Y. Alyapyshev, V.A. Babain, and Y.A. Ustynyuk, Recovery of minor actinides from high-level wastes: Modern trends, Russ. Chem. Rev., 85(2016), No. 9, p. 943. doi: 10.1070/RCR4589
|
[4] |
C.M. Jantzen, W.E. Lee, and M.I. Ojovan, Radioactive waste conditioning, immobilization, and encapsulation processes and technologies: Overview and advances, [in] W.E. Lee, M.I. Ojovan, and C.M. Jantzen, eds., Radioactive Waste Management and Contaminated Site Clean-up: Processes, Technologies and International Experience, Woodhead Publishing, Cambridge, 2013, p. 171.
|
[5] |
R.S. Forsyth and L.O. Werme, Spent fuel corrosion and dissolution, J. Nucl. Mater., 190(1992), p. 3. doi: 10.1016/0022-3115(92)90071-R
|
[6] |
I.W. Donald, B.L. Metcalfe, and R.N.J. Taylor, The immobilization of high level radioactive wastes using ceramics and glasses, J. Mater. Sci., 32(1997), No. 22, p. 5851. doi: 10.1023/A:1018646507438
|
[7] |
L. Wang and T.X. Liang, Ceramics for high level radioactive waste solidification, J. Adv. Ceram., 1(2012), No. 3, p. 194. doi: 10.1007/s40145-012-0019-8
|
[8] |
W.E. Lee, M.I. Ojovan, M.C. Stennett, and N.C. Hyatt, Immobilization of radioactive waste in glasses, glass composite materials and ceramics, Adv. Appl. Ceram., 105(2006), No. 1, p. 3. doi: 10.1179/174367606X81669
|
[9] |
E.R. Vance, B.D. Begg, and D.J. Gregg, Immobilization of high-level radioactive waste and used nuclear fuel for safe disposal in geological repository systems, [in] M.J. Apted and J. Ahn, eds., Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd ed., Woodhead Publishing, Cambridge, 2017, p. 269.
|
[10] |
C. Ferone, B. Liguori, A. Marocco, S. Anaclerio, M. Pansini, and C. Colella, Monoclinic (Ba, Sr)-celsian by thermal treatment of (Ba, Sr)-exchanged zeolite A, Microporous Mesoporous Mater., 134(2010), No. 1-3, p. 65. doi: 10.1016/j.micromeso.2010.05.008
|
[11] |
C.M. López-Badillo, J. López-Cuevas, C.A. Gutiérrez-Chavarría, J.L. Rodríguez-Galicia, and M.I. Pech-Canul, Synthesis and characterization of BaAl2Si2O8 using mechanically activated precursor mixtures containing coal fly ash, J. Eur. Ceram. Soc., 33(2013), No. 15-16, p. 3287. doi: 10.1016/j.jeurceramsoc.2013.05.014
|
[12] |
Y. Kobayashi and M. Inagaki, Preparation of reactive Sr-celsian powders by solid-state reaction and their sintering, J. Eur. Ceram. Soc., 24(2004), No. 2, p. 399. doi: 10.1016/S0955-2219(03)00215-2
|
[13] |
B. Liguori, C. Ferone, S. Anaclerio, and C. Colella, Monoclinic Sr-celsian by thermal treatment of Sr-exchanged zeolite A, LTA-type framework, Solid State Ionics, 179(2008), No. 40, p. 2358. doi: 10.1016/j.ssi.2008.09.006
|
[14] |
S. Chen and D.G. Zhu, Low-temperature sintering behaviour and properties of monoclinic-SrAl2Si2O8 ceramics prepared via an aqueous suspension milling process, J. Mater. Sci.:Mater. Electron., 27(2016), No. 11, p. 11127. doi: 10.1007/s10854-016-5230-x
|
[15] |
Z.H. Xu, Z. Jiang, D.D. Wu, X. Peng, Y.H. Xu, N. Li, Y.J. Qi, and P. Li, Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer, Ceram. Int., 43(2017), No. 5, p. 4434. doi: 10.1016/j.ceramint.2016.12.092
|
[16] |
ASTM International, ASTM Standard C1285-14: Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), ASTM International, West Conshohocken, 2014.
|
[17] |
E.M. Levin, H.F. McMurdie, and F.P. Hall, Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, 1956.
|
[18] |
E.M. Levin and H.F. McMurdie, The system BaO–B2O3, J. Am. Ceram. Soc., 32(1949), No. 3, p. 99. doi: 10.1111/j.1151-2916.1949.tb18932.x
|
[19] |
H. Witzmann and G. Herzog, Luminescence-optical behaviour of alkaline earth borate luminophors, Z. Phys. Chem., 225(1964), p. 197.
|
[20] |
R.M. German, S. Farooq, and C.M. Kipphut, Kinetics of liquid sintering, Mater. Sci. Eng. A, 105-106(1988), p. 215. doi: 10.1016/0025-5416(88)90499-5
|
[21] |
S. Chen, D.G. Zhu, and X.S. Cai, Low-temperature densification sintering and properties of monoclinic-SrAl2Si2O8 ceramics, Metall. Mater. Trans. A, 45(2014), No. 9, p. 3995. doi: 10.1007/s11661-014-2344-8
|
[22] |
S. Rajesh, H. Jantunen, M. Letz, and S. Pichler-Willhelm, Low temperature sintering and dielectric properties of alumina-filled glass composites for LTCC applications, Int. J. Appl. Ceram. Technol., 9(2012), No. 1, p. 52. doi: 10.1111/j.1744-7402.2011.02684.x
|
[23] |
S.D. Ross and M. Finkelstein, Barium Borate Preparation, United States Patent, Appl. 4897249, 1990.
|
[24] |
S. Chen, D.G. Zhu, P.Q. Sun, and H.L. Sun, Sintering behavior and dielectric properties of SrB2Si2O8 ceramics, J. Mater. Sci.:Mater. Electron., 24(2013), No. 11, p. 4593. doi: 10.1007/s10854-013-1448-z
|
[25] |
H. Scholze, Glass: Nature, Structure, and Properties, Springer, New York, 1991.
|